615 research outputs found

    Reprogramming glioblastoma multiforme cells into neurons by protein kinase inhibitors

    Get PDF
    Abstract Background Reprogramming of cancers into normal-like tissues is an innovative strategy for cancer treatment. Recent reports demonstrate that defined factors can reprogram cancer cells into pluripotent stem cells. Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor in humans. Despite multimodal therapy, the outcome for patients with GBM is still poor. Therefore, developing novel therapeutic strategy is a critical requirement. Methods We have developed a novel reprogramming method that uses a conceptually unique strategy for GBM treatment. We screened a kinase inhibitor library to find which candidate inhibitors under reprogramming condition can reprogram GBM cells into neurons. The induced neurons are identified whether functional and loss of tumorigenicity. Results We have found that mTOR and ROCK kinase inhibitors are sufficient to reprogram GBM cells into neural-like cells and “normal” neurons. The induced neurons expressed neuron-specific proteins, generated action potentials and neurotransmitter receptor-mediated currents. Genome-wide transcriptional analysis showed that the induced neurons had a profile different from GBM cells and were similar to that of control neurons induced by established methods. In vitro and in vivo tumorigenesis assays showed that induced neurons lost their proliferation ability and tumorigenicity. Moreover, reprogramming treatment with ROCK-mTOR inhibitors prevented GBM local recurrence in mice. Conclusion This study indicates that ROCK and mTOR inhibitors-based reprogramming treatment prevents GBM local recurrence. Currently ROCK-mTOR inhibitors are used as anti-tumor drugs in patients, so this reprogramming strategy has significant potential to move rapidly toward clinical trials

    Di-μ-chlorido-bis­[chlorido(1,10-phenanthroline-κ2 N,N′)zinc(II)]

    Get PDF
    In the crystal structure of the title complex, [Zn2Cl4(C12H8N2)2], each of the two five-coordinated ZnII atoms displays a strongly distorted trigonal-bipyramidal geometry defined by two N atoms from the chelate ligand and by one terminal and two bridging chloride anions. The crystal structure is stabilized by C—H⋯Cl inter­actions. There is inter­molecular π–π stacking between adjacent phenanthroline ligands, with a centroid–centroid distance of 3.151 (3) Å

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    Giant Cavernous Aneurysm Associated with a Persistent Trigeminal Artery and Persistent Otic Artery

    Get PDF
    Primitive trigeminal artery (PTA) and primitive otic artery (POA) is a very rare entity in adult life. We present a case of PTA and POA associated with a giant unruptured cavernous aneurysm in a 54-year-old woman. The PTA and the POA arose from the sac of the aneurysm directly, which greatly complicated endovascular therapy management

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore