321 research outputs found
Holonomic surface codes for fault-tolerant quantum computation
© 2018 American Physical Society. Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation
Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields
The exact propagators of two one-dimensional systems with time-dependent
external fields are presented by following the path-integral method. It is
shown that the Bloch acceleration theorem can be generalized to the
impulse-momentum theorem in quantum version. We demonstrate that an evolved
Gaussian wave packet always keeps its shape in an arbitrary time-dependent
homogeneous driven field. Moreover, that stopping and accelerating of a wave
packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure
Landauer-Büttiker formula for time-dependent transport through resonant-tunneling structures : a nonequilibrium Green’s function approach
2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Self-assembled nanostructures in strained heteroepitaxy
2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Superconducting charge qubits : the roles of self and mutual inductances
2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Probing the quantum behavior of a nanomechanical resonator coupled to a double quantum dot
Author name used in this publication: Shi-Hua Ouyang2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
Dynamics and quantum Zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation
Laboratory of Physical Sciences; National Security Agency; Army Research Office; National Science Foundation [0726909]; JSPS-RFBR [09-02-92114]; MEXT; Funding Program for Innovative R&D on ST (FIRST); National Natural Science Foundation of China [10904126We use a non-Markovian approach to study the decoherence dynamics of a qubit in either a low- or high-frequency bath modeling the qubit environment. This is done for two separate cases: either with measurements or without them. This approach is based on a unitary transformation and does not require the rotating-wave approximation. In the case without measurement, we show that, for low- frequency noise, the bath shifts the qubit energy toward higher energies (blue shift), while the ordinary high-frequency cutoff Ohmic bath shifts the qubit energy toward lower energies (red shift). In order to preserve the coherence of the qubit, we also investigate the dynamics of the qubit subject to measurements (quantum Zeno regime) in two cases: low- and high-frequency baths. For very frequent projective measurements, the low- frequency bath gives rise to the quantum anti-Zeno effect on the qubit. The quantum Zeno effect only occurs in the high-frequency-cutoff Ohmic bath, after counterrotating terms are considered. In the condition that the decay rate due to the two kinds of baths are equal under the Wigner-Weisskopf approximation, we find that without the approximation, for a high-frequency environment, the decay rate should be faster (without measurements) or slower (with frequent measurements, in the Zeno regime), compared to the low- frequency bath case. The experimental implementation of our results here could distinguish the type of bath (either a low- or high-frequency one) and protect the coherence of the qubit by modulating the dominant frequency of its environment
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Topologically Protected Quantum State Transfer in a Chiral Spin Liquid
Topology plays a central role in ensuring the robustness of a wide variety of
physical phenomena. Notable examples range from the robust current carrying
edge states associated with the quantum Hall and the quantum spin Hall effects
to proposals involving topologically protected quantum memory and quantum logic
operations. Here, we propose and analyze a topologically protected channel for
the transfer of quantum states between remote quantum nodes. In our approach,
state transfer is mediated by the edge mode of a chiral spin liquid. We
demonstrate that the proposed method is intrinsically robust to realistic
imperfections associated with disorder and decoherence. Possible experimental
implementations and applications to the detection and characterization of spin
liquid phases are discussed.Comment: 14 pages, 7 figure
- …