892 research outputs found

    Coupling Superconducting Qubits via a Cavity Bus

    Full text link
    Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two qubit interactions and gates having been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gates between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a quantum bus, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.Comment: 6 pages, 4 figures, to be published in Natur

    Five-Year Follow-Up of Parapapillary Atrophy: The Beijing Eye Study

    Get PDF
    Purpose: To assess longitudinal changes in parapapillary atrophy in the adult population of Greater Beijing. Methods: The population-based Beijing Eye Study 2006 included 3251 subjects who had participated in the Beijing Eye Study 2001 and returned for re-examination. The mean age was 60.4610.1 years. Using optic disc photographs, we measured parapapillary atrophy which was divided into alpha zone and beta zone. Results: Overall progression rate of alpha zone was seen in 0.660.1 % (95 % confidence interval (CI):0.3,0.9) of the subjects and of beta zone in 8.260.5 % (95%CI:7.2,9.1) of the subjects. In binary regression analysis, rate of progression of alpha zone was significantly associated higher age (P = 0.04) and the co-progression of zone Beta (P,0.001). Rate of progression of beta zone was significantly associated with higher age (P,0.001; odds ratio (OR):1.11;95%CI:1.10,1.14), higher intraocular pressure (P,0.001;OR:1.10;95%CI:1.05,1.14), higher myopic refractive error (P,0.001;OR:0.71; 95%CI:0.67,0.75), rural region of habitation (P = 0.002;OR: 0.58; 95%CI:0.41,0.82), presence of glaucomatous optic nerve damage (P,0.001;OR:2.89; 95%CI:1.62,5.14), co-progression of alpha zone (P,0.001;OR:7.13;95%CI:2.43,20.9), absence of arterial hypertension (P = 0.03;OR: 0.70; 95%CI:0.51,0.96), and thicker central corneal thickness (P = 0.02;OR:1.01;95%CI:1.00,1.01). Subjects with a non-glaucomatous optic nerve damage (n = 22) as compared to the remaining subjects did not vary in the progression rate of alpha zone (0.0 % versus 0.660.1%; P = 1.0) and beta zone (8.260.5 % versus 6.360.6%;P = 1.0)

    Probe R-parity violating stop resonance at the LHeC

    Full text link
    We investigate the possibility of detecting single sqaurk production at the proposed LHeC collider, in the framework of R-parity violating supersymmetry. Taking advantage of the enhancement of the direct resonance production of squark and the distinctive kinematics distributions of q~lq\tilde{q}\rightarrow l q two body decay final states, the LHeC provides excellent opportunities of probing R-violating L^Q^D^\hat{L}\hat{Q}\hat{D} interactions at unprecedented level compared to all the knowledge derived from indirect low energy nucleon measurements. If no apparent deviation from SM predictions on high invariant mass of muon and b-quark final states at the LHeC with 1fb1fb^{-1} data, the sensitivities on L^Q^D^\hat{L}\hat{Q}\hat{D} coupling constant λ131×λ233\lambda^{'}_{131} \times \lambda^{'}_{233} can be improved by nearly four orders, at energy scale about 100 GeV.Comment: 9 pages, 8 figure

    A beer a minute in Texas football: Heavy drinking and the heroizing of the antihero in Friday Night Lights

    Get PDF
    This article applies a qualitative framing analysis to the first three seasons of the television series Friday Night Lights, focusing particularly on its incorporation of heavy drinking into narrative representations of the player whose character is most consistently central to the game of football as fictionally mediated in small-town Texas over the course of those three seasons. The analysis suggests that over the course of that period Friday Night Lights embeds nuanced social meanings in its framing of alcohol use by that player and other characters so as to associate it with multiple potential outcomes. Yet among those outcomes, the most dominant framing works to, in effect, reverse a progression through which media representations historically evolved from a heroic model toward an antihero model, with heavy drinking central to that narrative process of meaning-making in such messages.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Methionine Sulfoxide Reductase A (MsrA) Deficient Mycoplasma genitalium Shows Decreased Interactions with Host Cells

    Get PDF
    Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells

    Chemotherapeutic errors in hospitalised cancer patients: attributable damage and extra costs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of increasing efforts to enhance patient safety, medication errors in hospitalised patients are still relatively common, but with potentially severe consequences. This study aimed to assess antineoplastic medication errors in both affected patients and intercepted cases in terms of frequency, severity for patients, and costs.</p> <p>Methods</p> <p>A 1-year prospective study was conducted in order to identify the medication errors that occurred during chemotherapy treatment of cancer patients at a French university hospital. The severity and potential consequences of intercepted errors were independently assessed by two physicians. A cost analysis was performed using a simulation of potential hospital stays, with estimations based on the costs of diagnosis-related groups.</p> <p>Results</p> <p>Among the 6, 607 antineoplastic prescriptions, 341 (5.2%) contained at least one error, corresponding to a total of 449 medication errors. However, most errors (n = 436) were intercepted before medication was administered to the patients. Prescription errors represented 91% of errors, followed by pharmaceutical (8%) and administration errors (1%). According to an independent estimation, 13.4% of avoided errors would have resulted in temporary injury and 2.6% in permanent damage, while 2.6% would have compromised the vital prognosis of the patient, with four to eight deaths thus being avoided. Overall, 13 medication errors reached the patient without causing damage, although two patients required enhanced monitoring. If the intercepted errors had not been discovered, they would have resulted in 216 additional days of hospitalisation and cost an estimated annual total of 92, 907€, comprising 69, 248€ (74%) in hospital stays and 23, 658€ (26%) in additional drugs.</p> <p>Conclusion</p> <p>Our findings point to the very small number of chemotherapy errors that actually reach patients, although problems in the chemotherapy ordering process are frequent, with the potential for being dangerous and costly.</p

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
    corecore