20,451 research outputs found

    Conversion of 40^{40}K-87^{87}Rb mixtures into stable molecules

    Full text link
    We study the conversion of 40^{40}K and 87^{87}Rb atoms into stable molecules through the stimulated Raman adiabatic passage (STIRAP) in photoassociation assisted with Feshbach resonance. Starting with the mean-field Langrange density, we show that the atom-to-molecule conversion efficiency by STIRAP aided by Feshbach resonance is much larger than that by bare Feshbach resonance. We also study the influence of the population imbalance on the atom-to-molecule conversion.Comment: Revtex, 5 pages, 3 figures; version to appear in PRA (some content changed

    Identification of the Sequence of Steps Intrinsic to Spheromak Formation

    Get PDF
    A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows

    Projective non-Abelian Statistics of Dislocation Defects in a Z_N Rotor Model

    Full text link
    Non-Abelian statistics is a phenomenon of topologically protected non-Abelian Berry phases as we exchange quasiparticle excitations. In this paper, we construct a Z_N rotor model that realizes a self-dual Z_N Abelian gauge theory. We find that lattice dislocation defects in the model produce topologically protected degeneracy. Even though dislocations are not quasiparticle excitations, they resemble non-Abelian anyons with quantum dimension sqrt(N). Exchanging dislocations can produces topologically protected projective non-Abelian Berry phases. The dislocations, as projective non-Abelian anyons can be viewed as a generalization of the Majorana zero modes.Comment: 4 pages + refs, 4 figures. RevTeX

    Supersymmetric Vertex Models with Domain Wall Boundary Conditions

    Get PDF
    By means of the Drinfeld twists, we derive the determinant representations of the partition functions for the gl(11)gl(1|1) and gl(21)gl(2|1) supersymmetric vertex models with domain wall boundary conditions. In the homogenous limit, these determinants degenerate to simple functions.Comment: 19 pages, 4 figures, to be published in J. Math. Phy

    Collocating Interface Objects: Zooming into Maps

    Get PDF
    May, Dean and Barnard [10] used a theoretically based model to argue that objects in a wide range of interfaces should be collocated following screen changes such as a zoom-in to detail. Many existing online maps do not follow this principle, but move a clicked point to the centre of the subsequent display, leaving the user looking at an unrelated location. This paper presents three experiments showing that collocating the point clicked on a map so that the detailed location appears in the place previously occupied by the overview location makes the map easier to use, reducing eye movements and interaction duration. We discuss the benefit of basing design principles on theoretical models so that they can be applied to novel situations, and so designers can infer when to use and not use them

    Majorana fermions in s-wave noncentrosymmetric superconductor with Rashba and Dresselhaus (110) spin-orbit couplings

    Full text link
    The asymmetric spin-orbit (SO) interactions play a crucial role in realizing topological phases in noncentrosymmetric superconductor (NCS).We investigate the edge states and the vortex core states in s-wave NCS with Rashba and Dresselhaus (110) SO couplings by both numerical and analytical methods. In particular, we demonstrate that there exists a novel semimetal phase characterized by the flat Andreev bound states in the phase diagram of the s-wave Dresselhaus NCS which supports the emergence of Majorana fermion (MF). The flat dispersion implies a peak in the density of states which has a clear experimental signature in the tunneling conductance measurements and the MFs proposed here should be experimentally detectable

    Doping a spin-orbit Mott Insulator: Topological Superconductivity from the Kitaev-Heisenberg Model and possible application to (Na2/Li2)IrO3

    Full text link
    We study the effects of doping a Mott insulator on the honeycomb lattice where spins interact via direction dependent Kitaev couplings J_K, and weak antiferromagnetic Heisenberg couplings J. This model is known to have a spin liquid ground state and may potentially be realized in correlated insulators with strong spin orbit coupling. The effect of hole doping is studied within a t-J-J_K model, treated using the SU(2) slave boson formulation, which correctly captures the parent spin liquid. We find superconductor ground states with spin triplet pairing that spontaneously break time reversal symmetry. Interestingly, the pairing is qualitatively different at low and high dopings, and undergoes a first order transition with doping. At high dopings, it is smoothly connected to a paired state of electrons propagating with the underlying free particle dispersion. However, at low dopings the dispersion is strongly influenced by the magnetic exchange, and is entirely different from the free particle band structure. Here the superconductivity is fully gapped and topological, analogous to spin polarized electrons with px+ipy pairing. These results may be relevant to honeycomb lattice iridates such as A2IrO3 (A=Li or Na) on doping.Comment: 8 pages + 6 pages supplementary material; 5 figures, 3 tabl

    Geometry and mechanics of microdomains in growing bacterial colonies

    Full text link
    Bacterial colonies are abundant on living and nonliving surfaces and are known to mediate a broad range of processes in ecology, medicine, and industry. Although extensively researched, from single cells to demographic scales, a comprehensive biomechanical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using molecular dynamics simulations and continuous modeling, we investigate the geometrical and mechanical properties of a bacterial colony growing on a substrate with a free boundary and demonstrate that such an expanding colony self-organizes into a "mosaic" of microdomains consisting of highly aligned cells. The emergence of microdomains is mediated by two competing forces: the steric forces between neighboring cells, which favor cell alignment, and the extensile stresses due to cell growth that tend to reduce the local orientational order and thereby distort the system. This interplay results in an exponential distribution of the domain areas and sets a characteristic length scale proportional to the square root of the ratio between the system orientational stiffness and the magnitude of the extensile active stress. Our theoretical predictions are finally compared with experiments with freely growing E. coli microcolonies, finding quantitative agreement.Comment: 10 pages, 7 figure
    corecore