75 research outputs found

    Rheological Properties of Carbon Nanofiber-Filled Polyamide Composites and Blend of these Composites and TPE

    Get PDF
    For the purpose of developing new engineering materials with sufficient balance among mechanical, electrical, processability, triboloical properties, etc., in this study, we investigated the dynamic viscoelastic properties of carbon nanofiber (CNF) filled polyamide (PA) composites and the blend of these composites and thermoplastic elastomer (TPE) in the molten state, which were mainly obtained in our previous studies. It was found that vapor grown carbon fiber (vapor grown carbon fiber) has a stronger influence on the dynamic viscoelastic properties of the composites in the molten state. Rheological percolation thresholds seem to exist between 1vol.% and 5vol.% of VGCF contents. On the other hand, the effect of the addition of TPE (styrene-ethylene/butylene-styrene copolymer (SEBS) and maleic anhydride grafted SEBS (SEBS-g-MA)) on the dynamic viscoelastic properties of VGCF/PA6 composites in the molten state differed at each viscoelastic value. It was clarified that the dynamic viscoelastic properties of VGCF/PA6/SEBS-g-MA ternary composites are higher than those of VGCF/PA6/SEBS ones. Furthermore, the influence of processing sequences on the dynamic viscoelastic properties of VGCF/PA6/SEBS-g-MA composites in the molten state differed according to the mixing steps of materials. These may be attributed to the change in the internal structure caused by addition of TPE, type of SEBS and processing sequences

    Influence of processing sequence on the tribological properties of VGCF-X/PA6/SEBS composites

    Get PDF
    In order to develop the new tribomaterials for mechanical sliding parts with sufficient balance of mechanical and tribological properties, we investigated the influence of processing sequence on the tribological properties of the ternary nanocomposites: the polymer blends of polyamide 6 (PA6) and styrene-ethylene/butylene-styrene copolymer (SEBS) tilled with vapor grown carbon fiber (VGCF-X), which is one of carbon nanofiber (CNF) and has 15mn diameter and 3 mu m length. Five different processing sequences: (1) VGCF-X, PA6 and SEBS were mixed simultaneously (Process A), (2) Re-mixing (Second compounding) of the materials prepared by Process A (Process AR),(3) SEBS was blended with PA6 (PA6/SEBS blends) and then these blends were mixed with VGCF-X (Process B), (4) VGCF-X was mixed with PA6 (VGCF-X/PA6 composites) and then these composites were blended with SEBS (Process C), and (5) VGCF-X were mixed with SEBS (VGCF-X/SEBS composites) and then these composites were blended with PA6 (Process D) were attempted for preparing of the ternary nanocomposites (VGCF-X/PA6/SEBS composites). These ternary polymer nanocomposites were extruded by a twin screw extruder and injection-molded. Their tribological properties were evaluated by using a ring-on-plate type sliding wear tester under dry condition. The tribological properties such as the frictional coefficient and the specific wear rate were influenced by the processing sequence. These results may he attributed to the change of internal structure formation, which is a dispersibility of SEBS particle and VGCF-X in ternary nanocomposites (VGCF-X/PA6/SEBS) by different processing sequences. in particular, the processing sequences of AR, B and D, which are those of re-mixing of VGCF-X, have a good dispersibility of VGCF-X for the improvement of tribological properties

    Tribological properties of nanosized calcium carbonate filled polyamide 66 nanocomposites

    Get PDF
    For the purpose of developing high performance tribomaterials for mechanical sliding parts such as gears, bearings and so on, nanosized calcium carbonate (nano-CaCO3) tilled polyamide 66 (PA66) nanocomposites were investigated. The nano-CaCO3 was a kind of precipitated (colloid typed) CaCO3, and its average particle size was 40, 80 and 150 nm. Surface treatment was performed by fatty acid on the nano-CaCO3 and its volume fraction in the nanocomposite was varied from 1 to 20vol.%. These nanocomposites were melt-mixed by a twin screw extruder and injection-molded. Tribological properties were measured by two types of sliding wear testers such as ring-on-plate type and ball-on-plate type one under dry condition. The counterface, worn surface and wear debris were observed by digital microscope and scanning electron microscope. It was found that the nano-CaCO3 has a good effect on the tribological properties, although the effect on the frictional coefficient and specific wear rate is differed by the volume fraction and the type of sliding wear modes. This is attributed to the change of wear mechanisms, which is the change of form of the transfer films on the counterface and the size of wear debris. It follows from these results that PA66/nano-CaCO3 nanocomposites may be possible to be the high performance tribomaterials

    Thermal Properties of Hemp Fiber Reinforced Plant-Derived Polyamide Biomass Composites and their Dynamic Viscoelastic Properties in Molten State

    Get PDF
    To further enhance the mechanical, thermal, and tribological properties of short natural fiber-reinforced biopolymer composites, it is very critical to understand thermal properties of these biomass composites and their dynamic viscoelastic properties in the molten state. The aim of this study is to experimentally investigate the thermal properties of hemp fiber filled plant-derived polyamide 1010 composites and their dynamic viscoelastic properties in the molten state. It was found that the addition of HF with PA1010 has a strong influence on the thermal properties such as DMA, TGA, and DSC. HF is very effective for improving the thermal and mechanical properties. The effect of alkali treatment on the dynamic viscoelastic properties of the HF/PA1010 composites in the molten state differs according to whether alkali treatment uses silane coupling agent or not. The viscoelastic properties of NaClO2 are higher than those of NaOH. Silane coupling agents have a remarkable influence on rheological properties such as storage modulus, loss modulus, and complex viscosity in the low angular frequency region in the molten state, temperature dependences of rheological properties, and relationship between the phase angle and complex modulus. These rheological behaviors are also strongly influenced by the type of silane coupling agents

    Fabrication of micro-structured surface of plants-derived polyamide using femtosecond laser and their frictional properties

    Get PDF
    For the purpose of developing the new polymeric tribomaterials using biopolymer, the fabrication of micro-structured surfaces of plants-derived polyamide (PA) using femtosecond laser and their frictional properties were investigated. In this study, the effect of processing parameter such as laser power, laser speed and pitch distance on the fabrication of micro-structured surfaces of polyamide 66 (PA66) and plants-derived polyamide 1010 (PA1010) was investigated experimentally, and their frictional properties and wettability were evaluated. Polyamides (PA1010 and PA66) were extruded by a twin screw extruder and injection-molded to 30mm × 30mm × 3mm sheet. The micro-structured surfaces on the polyamides were fabricated by femtosecond laser. The micro-structured surfaces on the polyamides by laser fabrication were observed by laser microscope and scanning electron microscope (SEM). Frictional properties were measured by a ball on plate reciprocating type sliding wear tester under lubrication conditions. It was found that the surface microchannels are able to be fabricated by the femtosecond laser and have a good effect for the improvement of the frictional properties and wettability of PA66 and plants-derived PA1010. Laser power influences strongly on the microchannels size, wettability and frictional properties. This may be attributed that the micro-structured surface plays an important role in the key components for the polymeric tribomaterials. © 2016 Author(s).MEXT, Ministry of Education, Culture, Sports, Science, and Technolog

    Thermal properties of hemp fiber filled polyamide 1010 biomass composites and the blend of these composites and polyamide 11 elastomer

    Get PDF
    The aim of this study is to improve the performance of all inedible plants-derived materials for new engineering materials such as structural materials and tribomaterials. Thermal properties of hemp fiber tilled polyamide 1010 biomass composites and the blend of these composites and plants-derived TPE, were investigated experimentally. These biomass composites were extruded by a twin screw extruder and compression or injection molded. Thermal properties such as dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of these biomass composites were evaluated. It was found that the addition of HF and the blend of bio-TPE With PA1010 have strong influence on the thermal properties such as DMA, TGA and DSC. In particular, IT has a good effect for the improvement of the thermal and mechanical properties. These properties of HF/PA1010/PA11E biomass composites are better than those of HF/PA1010/ITU ones

    Effect of processing sequence on the dynamic viscoelastic properties of ternary biomass composites (Hemp fiber/PA1010/PA11E) in the molten state

    Get PDF
    For developing the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, we investigated the effect of processing sequence on the dynamic viscoelastic properties of the ternary biomass composites: 5mm cut hemp fiber (HF) filled polymer blend of plants-derived polyamide 1010 (PA1010) and polyamide 11 elastomer (PA11E) composites in the molten state. PA1010 and PA11E, which contain the polyether groups as soft segment, were made from plant-derived castor oil. The composition of the polymer blend of PA1010 and PA11E was fixed with 60/40 weight fraction. HF was surface-treated by two types of treatment: alkali treatment by NaOH solution and surface treatment by ureido silane coupling agent. The volume fraction of HF in the composites was fixed with 20vol.%. Five different processing sequences: (1) HF, PA1010 and PA11E were mixed simultaneously (Process A), (2) Re-mixing (second compounding) of the materials prepared by Process A (Process AR), (3) PA11E was blended with PA1010 (PA1010/PA11E blends) and then these blends were mixed with HF (Process B), (4) HF was mixed with PA1010 (HF/PA1010 composites) and then these composites were blended with PA11E (Process C), and (5) HF were mixed with PA11E (HF/PA11E composites) and then these composites were blended with PA1010 (Process D) were attempted for preparing the ternary biomass composites (HF/PA1010/PA11E) composites. These ternary biomass composites were extruded by a twin screw extruder and compression-molded. Their dynamic viscoelastic properties in the molten state were evaluated by oscillatory flow testing using a parallel plate type rheometer. It was found that those properties of the ternary biomass composites in the molten state are influenced so much by processing sequence. This is attributed to the change of internal microstructure of these composites such as the distribution and dispersion of HF. © 2016 Author(s).JSPS, Japan Society for the Promotion of Scienc

    Influence of types of alkali treatment on the mechanical properties of hemp fiber reinforced polyamide 1010 composites

    Get PDF
    In order to develop the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, the purpose of this study is to investigate the influence of types of alkali treatment on the mechanical and tribological properties of hemp fiber (HF) reinforced plants-derived polyamide 1010 (HF/PA1010) biomass composites. HF were surface-treated by four types of surface treatments: (a) alkali treatment by sodium hydroxide (NaOH) solution, (b) alkali treatment by sodium chlorite (NaClO2) solution, (c) alkali treatment by NaOH solution and surface treatment by ureido silane coupling agent, and (d) alkali treatment by NaClO2 solution and surface treatment by ureido silane. The volume fraction of hemp fiber in the composites was fixed with 20vol.%. HF/PA1010 composites were extruded by a twin screw extruder and injection-molded. Mechanical properties such as tensile, bending and tribological properties by ring-on-plate type sliding wear testing were evaluated. It was found that the effect of the types of alkali treatment on the mechanical and tribological properties of the composites differed for each property. The mechanical and tribological properties are improved with both alkali treatments by NaOH and NaClO2 with or without the surface treatment by ureido silane coupling agent (A-1160). This may be attributed to the interfacial interaction and interphase adhesion between HF and PA1010 according to the type of these alkali treatments. The combination NaClO2 and A-1160 is the most effect improvement for the mechanical and tribological properties of HF/PA1010 biomass composites. It follows from these results that it may be possible to develop the new engineering materials with sufficient balance between mechanical and tribological properties. © 2016 Author(s)

    Tribological properties of PTFE filled plants-derived semi-aromatic polyamide (PA10T) and GF reinforced PTFE/PA10T composites

    Get PDF
    For the purpose of developing the new engineering materials such as structural materials and tribomaterials based on plants-derived polymers, the tribological properties of polytetrafluoroethylene (PTFE) filled plants-derived semi-aromatic polyamide 10T (PA10T) composites and glass fiber (GF) reinforced PTFE/PA10T composites were investigated. PA10T is a kind of polyphthalamide (PPA, semi-aromatic polyamide) and biomass polymer made from plants-derived decamethylenediamine and coal-derived terephthalic acid. PTFE/PA10T and GF/PA10T/PTFE composites were melt-mixed by a twin screw extruder and injection-molded. Their mechanical properties such as tensile, Izod impact, and tribological properties were evaluated. Tribological properties were measured by a ring-on-plate type sliding wear tester under dry condition. Tribological properties of PA10T such as frictional coefficient, specific wear rate and limiting pv value improved with the addition of PTFE, although the mechanical properties such as tensile strength and tensile modulus decreased with PTFE. On the other hand, the frictional coefficient and specific wear rate of GF/PA10T/PTFE composites were higher than those of PTFE/PA10T composites, however limiting pv value and mechanical properties improved significantly with the filling of GF. It follows from these results that it may be possible to develop the new tribomaterials based on plants-derived polymer composites with sufficient balances between mechanical and tribological properties
    • …
    corecore