29 research outputs found
Distributed under Creative Commons CC-BY 4.0 Effect of interleukin (IL)-35 on IL-17 expression and production by human CD4 + T cells
ABSTRACT Background. Interleukin (IL)-17 produced by mainly T helper 17 (Th17) cells may play an important destructive role in chronic periodontitis (CP). Thus, anti-inflammatory cytokines, such as IL-35, might have a beneficial effect in periodontitis by inhibiting differentiation of Th17 cells. Th17 differentiation is regulated by the retinoic acid receptor-related orphan receptor (ROR) α (encoded by RORA) and RORγ t (encoded by RORC). However, the role of IL-35 in periodontitis is not clear and the effect of IL-35 on the function of Th17 cells is still incompletely understood. Therefore, we investigated the effects of IL-35 on Th17 cells. Methods. Peripheral blood mononuclear cells (PBMCs) were sampled from three healthy volunteers and three CP patients and were analyzed by flow cytometry for T cell population. Th17 cells differentiated by a cytokine cocktail (recombinant transforming growth factor-β, rIL-6, rIL-1β, anti-interferon (IFN)-γ , anti-IL-2 and anti-IL-4) from PBMCs were cultured with or without rIL-35. IL17A (which usually refers to IL-17), RORA and RORC mRNA expression was analyzed by quantitative polymerase chain reaction, and IL-17A production was determined by enzyme-linked immunosorbent assay. Results. The proportion of IL-17A + CD4 + slightly increased in CP patients compared with healthy controls, however, there were no significant differences in the percentage of IL-17A + CD4 + as well as IFN-γ + CD4 + and Foxp3 + CD4 + T cells between healthy controls and CP patients. IL17A, RORA and RORC mRNA expression was significantly increased in Th17 cells induced by the cytokine cocktail, and the induction was significantly inhibited by addition of rIL-35 (1 ng/mL). IL-17A production in Th17 cells was significantly inhibited by rIL-35 addition (1 ng/mL). Discussion. The present study suggests that IL-35 could directly suppress IL-17 expression via RORα and RORγ t inhibition and might play an important role in inflammatory diseases such as periodontitis
Pedicle screw insertion into infected vertebrae reduces operative time and range of fixation in minimally invasive posterior fixation for thoracolumbar pyogenic spondylitis: a multicenter retrospective cohort study
Abstract Background Minimally invasive posterior fixation surgery for pyogenic spondylitis is known to reduce invasiveness and complication rates; however, the outcomes of concomitant insertion of pedicle screws (PS) into the infected vertebrae via the posterior approach are undetermined. This study aimed to assess the safety and efficacy of PS insertion into infected vertebrae in minimally invasive posterior fixation for thoracolumbar pyogenic spondylitis. Methods This multicenter retrospective cohort study included 70 patients undergoing minimally invasive posterior fixation for thoracolumbar pyogenic spondylitis across nine institutions. Patients were categorized into insertion and skip groups based on PS insertion into infected vertebrae, and surgical data and postoperative outcomes, particularly unplanned reoperations due to complications, were compared. Results The mean age of the 70 patients was 72.8 years. The insertion group (n = 36) had shorter operative times (146 versus 195 min, p = 0.032) and a reduced range of fixation (5.4 versus 6.9 vertebrae, p = 0.0009) compared to the skip group (n = 34). Unplanned reoperations occurred in 24% (n = 17) due to surgical site infections (SSI) or implant failure; the incidence was comparable between the groups. Poor infection control necessitating additional anterior surgery was reported in four patients in the skip group. Conclusions PS insertion into infected vertebrae during minimally invasive posterior fixation reduces the operative time and range of fixation without increasing the occurrence of unplanned reoperations due to SSI or implant failure. Judicious PS insertion in patients with minimal bone destruction in thoracolumbar pyogenic spondylitis can minimize surgical invasiveness
Correction: Interleukin-1 Receptor Antagonist Has a Novel Function in the Regulation of Matrix Metalloproteinase-13 Expression.
[This corrects the article DOI: 10.1371/journal.pone.0140942.]
Interleukin-1 Receptor Antagonist Has a Novel Function in the Regulation of Matrix Metalloproteinase-13 Expression.
Interleukin-1 receptor antagonist (IL-1Ra) is an IL-1 family member, which binds to IL-1 receptors but does not induce any intracellular signaling. We addressed whether IL-1Ra has a novel function in regulation of the extracellular matrix or adhesion molecules. Polymerase chain reaction array analysis demonstrated a ~5-fold increase in matrix metalloproteinase 13 (MMP-13) mRNA expression of IL-1Ra siRNA-transfected Ca9-22 human oral squamous epithelial carcinoma cells compared with the control. In fact, MMP-13 mRNA and protein expression as well as its activity in IL-1Ra siRNA-transfected Ca9-22 cell lines were significantly higher than those in the control. IL-1Ra siRNA treatment resulted in strong elevation of MMP-13 expression, whereas addition of rhIL-1Ra (40 ng/ml) suppressed MMP-13 expression, suggesting that IL-1Ra had a specific effect on MMP-13 induction. IL-1Ra siRNA could potently suppress IL-1α. No significant difference was found between the MMP-13 mRNA expression of IL-1Ra siRNA-transfected cells and those treated with anti-IL-1α or anti-IL-1β antibodies. These results suggested that continuous supply of IL-1 had no effect on the induction of MMP-13 by IL-1Ra siRNA. Histopathological investigation of MMP-13 in periodontal tissue showed specific localization in the junctional epithelial cells of IL-1Ra knockout (KO) mice. Furthermore, infection with Aggregatibacter actinomycetemcomitans to establish an experimental periodontitis model resulted in predominant localization of MMP-13 along apical junctional epithelial cells. Laminin-5, which is degraded by MMP-13, was found in the internal basal lamina of wild-type mice, whereas the internal basal lamina of IL-1Ra KO mice did not show obvious laminin-5 localization. In particular, laminin-5 localization almost disappeared in the internal basal lamina of IL-1Ra KO mice infected with A. actinomycetemcomitans, suggesting that the suppression of IL-1Ra resulted in strong induction of MMP-13 that degraded laminin-5. In conclusion, IL-1Ra is associated with MMP-13 expression and has a novel function in such regulation without interference of the IL-1 signaling cascade