130 research outputs found

    FGF signaling controls brain asymmetry in Zebrafish

    Get PDF

    Semaphorin3D regulates invasion of cardiac neural crest cells into the primary heart field

    Get PDF
    AbstractThe primary heart field in all vertebrates is thought to be derived exclusively from lateral plate mesoderm (LPM), which gives rise to a cardiac tube shortly after gastrulation. The heart tube then begins looping and additional cells are added from other embryonic regions, including the secondary heart field, cardiac neural crest and the proepicardial organ. Here we show in zebrafish that neural crest cells invade and contribute cardiac myosin light chain2 (cmlc2)-positive cardiomyocytes to the primary heart field. Knockdown of semaphorin3D, which is expressed in the neural crest but apparently not in LPM, reduces the size of the primary heart field and the number of cardiomyocytes in the primary heart field by 20% before formation of the primary heart tube. Sema3D morphants have subsequent complex congenital heart defects, including hypertrophic cardiomyocytes, decreased ventricular size and defects in trabeculation and in atrioventricular (AV) valve development. Neuropilin1A, a semaphorin receptor, is expressed in LPM but apparently not in the neural crest, and nrp1A morphants have cardiac development defects. We propose that a population of sema3D-dependent neural crest cells follow a novel migratory pathway, perhaps toward nrp1A-expressing LPM, and serve as an important early source of cardiomyocytes in the primary heart field

    Dvr1 transfers left–right asymmetric signals from Kupffer's vesicle to lateral plate mesoderm in zebrafish

    Get PDF
    AbstractAn early step in establishing left–right (LR) symmetry in zebrafish is the generation of asymmetric fluid flow by Kupffer's vesicle (KV). As a result of fluid flow, a signal is generated and propagated from the KV to the left lateral plate mesoderm, activating a transcriptional response of Nodal expression in the left lateral plate mesoderm (LPM). The mechanisms and molecules that aid in this transfer of information from the KV to the left LPM are still not clear. Here we provide several lines of evidence demonstrating a role for a member of the TGFβ family member, Dvr1, a zebrafish Vg1 ortholog. Dvr1 is expressed bilaterally between the KV and the LPM. Knockdown of Dvr1 by morpholino causes dramatically reduced or absent expression of southpaw (spaw, a Nodal homolog), in LPM, and corresponding loss of downstream Lefty (lft1 and lft) expression, and aberrant brain and heart LR patterning. Dvr1 morphant embryos have normal KV morphology and function, normal expression of southpaw (spaw) and charon (cha) in the peri-KV region and normal expression of a variety of LPM markers in LPM. Additionally, Dvr1 knockdown does not alter the capability of LPM to respond to signals that initiate and propagate spaw expression. Co-injection experiments in Xenopus and zebrafish indicate that Dvr1 and Spaw can enhance each other's ability to activate the Nodal response pathway and co-immunoprecipitation experiments reveal differential relationships among activators and inhibitors in this pathway. These results indicate that Dvr1 is responsible for enabling the transfer of a left–right signal from KV to the LPM

    A One-Step Miniprep for the Isolation of Plasmid DNA and Lambda Phage Particles

    Get PDF
    Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs) have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E.coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps

    Transient axonal glycoprotein-1 (TAG-1) and laminin-α1 regulate dynamic growth cone behaviors and initial axon direction in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>How axon guidance signals regulate growth cone behavior and guidance decisions in the complex <it>in vivo </it>environment of the central nervous system is not well understood. We have taken advantage of the unique features of the zebrafish embryo to visualize dynamic growth cone behaviors and analyze guidance mechanisms of axons emerging from a central brain nucleus <it>in vivo</it>.</p> <p>Results</p> <p>We investigated axons of the nucleus of the medial longitudinal fascicle (nucMLF), which are the first axons to extend in the zebrafish midbrain. Using <it>in vivo </it>time-lapse imaging, we show that both positive axon-axon interactions and guidance by surrounding tissue control initial nucMLF axon guidance. We further show that two guidance molecules, transient axonal glycoprotein-1 (TAG-1) and laminin-α1, are essential for the initial directional extension of nucMLF axons and their subsequent convergence into a tight fascicle. Fixed tissue analysis shows that TAG-1 knockdown causes errors in nucMLF axon pathfinding similar to those seen in a laminin-α1 mutant. However, <it>in vivo </it>time-lapse imaging reveals that while some defects in dynamic growth cone behavior are similar, there are also defects unique to the loss of each gene. Loss of either TAG-1 or laminin-α1 causes nucMLF axons to extend into surrounding tissue in incorrect directions and reduces axonal growth rate, resulting in stunted nucMLF axons that fail to extend beyond the hindbrain. However, defects in axon-axon interactions were found only after TAG-1 knockdown, while defects in initial nucMLF axon polarity and excessive branching of nucMLF axons occurred only in laminin-α1 mutants.</p> <p>Conclusion</p> <p>These results demonstrate how two guidance cues, TAG-1 and laminin-α1, influence the behavior of growth cones during axon pathfinding <it>in vivo</it>. Our data suggest that TAG-1 functions to allow growth cones to sense environmental cues and mediates positive axon-axon interactions. Laminin-α1 does not regulate axon-axon interactions, but does influence neuronal polarity and directional guidance.</p

    Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome

    Get PDF
    Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC), cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS), warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes

    Application of a Key Events Dose-Response Analysis to Nutrients: A Case Study with Vitamin A (Retinol)

    Get PDF
    The methodology used to establish tolerable upper intake levels (UL) for nutrients borrows heavily from risk assessment methods used by toxicologists. Empirical data are used to identify intake levels associated with adverse effects, and Uncertainty Factors (UF) are applied to establish ULs, which in turn inform public health decisions and standards. Use of UFs reflects lack of knowledge regarding the biological events that underlie response to the intake of a given nutrient, and also regarding the sources of variability in that response. In this paper, the Key Events Dose-Response Framework (KEDRF) is used to systematically consider the major biological steps that lead from the intake of the preformed vitamin A to excess systemic levels, and subsequently to increased risk of adverse effects. Each step is examined with regard to factors that influence whether there is progression toward the adverse effect of concern. The role of homeostatic mechanisms is discussed, along with the types of research needed to improve understanding of dose-response for vitamin A. This initial analysis illustrates the potential of the KEDRF as a useful analytical tool for integrating current knowledge regarding dose-response, generating questions that will focus future research efforts, and clarifying how improved knowledge and data could be used to reduce reliance on UFs

    Mechanisms of congenital heart disease caused by NAA15 haploinsufficiency

    Get PDF
    Rationale: NAA15 is a component of the N-terminal (Nt) acetyltransferase complex, NatA. The mechanism by which NAA15 haploinsufficiency causes congenital heart disease (CHD) remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity, and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous LoF, compound heterozygous and missense residues (R276W) in iPS cells using CRISPR/Cas9. Haploinsufficient NAA15 iPS cells differentiate into cardiomyocytes, unlike NAA15-null iPS cells, presumably due to altered composition of NatA. Mass spectrometry (MS) analyses reveal ~80% of identified iPS cell NatA targeted proteins displayed partial or complete Nt-acetylation. Between null and haploinsufficient NAA15 cells Nt-acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W iPSCs. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; eighteen were ribosomal-associated proteins. At least four proteins were encoded by genes known to cause autosomal dominant CHD. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and Nt-acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated CHD. Additionally, genetically engineered iPS cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function
    corecore