392 research outputs found

    Organizational Control Systems and Software Quality: A Cross-National Study.

    Get PDF
    This study explores the relationship between organizational control modes (behavior, outcome, and clan) andsoftware quality. Much of the previous work on organizational control has examined the choice of modes giventask characteristics. This research extends work in control theory by considering the impact of control modeson the increasingly critical organizational outcome of software quality. The research is set in the context ofsoftware development organizations in three of the largest software developing countries: India, Ireland, andIsrael (the 3Is). A cross sectional survey of 400 software development organizations across the 3Is will be usedto test the developed model. In addition to the theoretical contributions, the study will provide practicalimplications to support software project managers in making better organizational control choices

    OGLE-2013-BLG-0911Lb: A Secondary on the Brown-dwarf Planet Boundary around an M Dwarf

    Get PDF
    We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q 0.03, which differs from that reported in Shvartzvald et al. The event suffers from the well-known close/wide degeneracy, resulting in two groups of solutions for the projected separation normalized by the Einstein radius of s ~ 0.15 or s ~ 7. The finite source and the parallax observations allow us to measure the lens physical parameters. The lens system is an M dwarf orbited by a massive Jupiter companion at very close (M_(host) = 0.30^(+0.08)_(-0.06)M⊙, M_(comp) = 10.1^(+2.9)_(-2.2)M_(Jup), a_(exp) = 0.40^(+0.05)_(-0.04) au) or wide (M_(host) = 0.28^(+0.10)_(-0.08) M⊙, M_(comp) = 9.9^(+3.8)_(-3.5)M_(Jup), a(exp) = 18.0^(+3.8)_(3.5) au) separation. Although the mass ratio is slightly above the planet-brown dwarf (BD) mass-ratio boundary of q = 0.03, which is generally used, the median physical mass of the companion is slightly below the planet-BD mass boundary of 13M_(Jup). It is likely that the formation mechanisms for BDs and planets are different and the objects near the boundaries could have been formed by either mechanism. It is important to probe the distribution of such companions with masses of ~13M_(Jup) in order to statistically constrain the formation theories for both BDs and massive planets. In particular, the microlensing method is able to probe the distribution around low-mass M dwarfs and even BDs, which is challenging for other exoplanet detection methods

    The dynamics of cracks in torn thin sheets

    Full text link
    Motivated by recent experiments, we present a study of the dynamics of cracks in thin sheets. While the equations of elasticity for thin plates are well known, there remains the question of path selection for a propagating crack. We invoke a generalization of the principle of local symmetry to provide a criterion for path selection and demonstrate qualitative agreement with the experimental findings. The nature of the singularity at the crack tip is studied with and without the interference of nonlinear terms.Comment: 7 pages, 11 figure

    Astrocytic modulation of neuronal signalling

    Get PDF
    Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration
    • …
    corecore