7 research outputs found

    Weak topological insulator with protected gapless helical states

    Get PDF
    A workable model for describing dislocation lines introduced into a three-dimensional topological insulator is proposed. We show how fragile surface Dirac cones of a weak topological insulator evolve into protected gapless helical modes confined to the vicinity of dislocation line. It is demonstrated that surface Dirac cones of a topological insulator (either strong or weak) acquire a finite-size energy gap, when the surface is deformed into a cylinder penetrating the otherwise surface-less system. We show that when a dislocation with a non-trivial Burgers vector is introduced, the finite-size energy gap play the role of stabilizing the one-dimensional gapless states.Comment: 8 pages, 17 figure

    Spin Berry phase in the Fermi arc states

    Get PDF
    Unusual electronic property of a Weyl semi-metallic nanowire is revealed. Its band dispersion exhibits multiple subbands of partially flat dispersion, originating from the Fermi arc states. Remarkably, the lowest energy flat subbands bear a finite size energy gap, implying that electrons in the Fermi arc surface states are susceptible of the spin Berry phase. This is shown to be a consequence of spin-to-surface locking in the surface electronic states. We verify this behavior and the existence of spin Berry phase in the low-energy effective theory of Fermi arc surface states on a cylindrical nanowire by deriving the latter from a bulk Weyl Hamiltonian. We point out that in any surface state exhibiting a spin Berry phase pi, a zero-energy bound state is formed along a magnetic flux tube of strength, hc/(2e). This effect is highlighted in a surfaceless bulk system pierced by a dislocation line, which shows a 1D chiral mode along the dislocation line.Comment: 9 pages, 9 figure

    Spherical topological insulator

    Get PDF
    The electronic spectrum on the spherical surface of a topological insulator reflects an active property of the helical surface state that stems from a constraint on its spin on a curved surface. The induced effective vector potential (spin connection) can be interpreted as an effective vector potential associated with a fictitious magnetic monopole induced at the center of the sphere. The strength of the induced magnetic monopole is found to be g=2pi, -2pi, being the smallest finite (absolute) value compatible with the Dirac quantization condition. We have established an explicit correspondence between the bulk Hamiltonian and the effective Dirac operator on the curved spherical surface. An explicit construction of the surface spinor wave functions implies a rich spin texture possibly realized on the surface of topological insulator nanoparticles. The electronic spectrum inferred by the obtained effective surface Dirac theory, confirmed also by the bulk tight-binding calculation, suggests a specific photo absorption/emission spectrum of such nanoparticles.Comment: 13 pages, 2 figure
    corecore