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Spherical topological insulator

Ken-Ichiro Imura,1 Yukinori Yoshimura,1 Yositake Takane,1 and Takahiro Fukui2
1Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

2Department of Physics, Ibaraki University, Mito 310-8512, Japan
(Received 22 May 2012; published 13 December 2012)

The electronic spectrum on the spherical surface of a topological insulator reflects an active property of the
helical surface state that stems from a constraint on its spin on a curved surface. The induced spin connection
can be interpreted as an effective vector potential associated with a fictitious magnetic monopole induced at
the center of the sphere. The strength of the induced magnetic monopole is found to be g = ±2π , being the
smallest finite (absolute) value compatible with the Dirac quantization condition. We have established an explicit
correspondence between the bulk Hamiltonian and the effective Dirac operator on the curved spherical surface.
An explicit construction of the surface spinor wave functions implies a rich spin texture possibly realized on the
surface of topological insulator nanoparticles. The electronic spectrum inferred by the obtained effective surface
Dirac theory, confirmed also by the bulk tight-binding calculation, suggests a specific photoabsorption/emission
spectrum of such nanoparticles.

DOI: 10.1103/PhysRevB.86.235119 PACS number(s): 73.20.−r, 73.63.Fg, 72.25.Mk, 61.72.Lk

I. INTRODUCTION

It was only several years ago that the idea of a topological
insulator had been proposed as a possible candidate for the
new state of matter in the field of condensed matter.1 The
original theoretical idea has already been extended in various
aspects, made applicable to a broader range of phenomena,
including superconductivity and superfluidity.2,3 The related
research areas are now reclassified and recognized as that of
the topological quantum phenomena. Naturally the outbreak
of this new research field owes much to a rapid success of
experimental studies that have demonstrated that the new
theoretical idea has much reality.4

The existence of a single gapless Dirac cone in its surface
spectrum is a hallmark of strong topological insulators. Here
we focus on a specific property of this robust and protected sur-
face state on a curved surface,5 the “spin-to-surface locking.” It
is indeed specific to the topological insulator surface state and
distinguishes it from other realizations of gapless Dirac cones
in condensed matter such as in graphene6,7 and related carbon
materials. The role of spin-to-surface locking may be most
accentuated in the (pseudocylindrical) wire-shaped geometry
in which an anomalous Aharonov-Bohm type of oscillation
has been reported.8 Motivated by the reality of such transport
measurements which may allow for a direct observation of the
spin Berry phase, theorists have extensively studied the role of
this phenomenon in the transport characteristics of the surface
state.9–13

A remarkable consequence of the spin-to-surface locking
in the cylindrical geometry is the half-integral quantization
of the orbital angular momentum. Clearly such half-integral
quantization leads to an appearance of a finite-size energy
gap in the hitherto gapless surface electronic spectrum. Inter-
estingly, introduction of a physical magnetic flux of half of a
unit flux quantum through (piercing) the cylinder compensates
the Berry phase associated with the spin-to-surface locking,
and closes the gap. The same mechanism applies to the
classification of gapless electronic states bound to a crystal
dislocation line penetrating an otherwise surfaceless sample of
a three-dimensional topological insulator.14 A more systematic

consideration15 on such gapless electronic states associated
with a topological defect in a topological mother system has
been developed from the viewpoint of classifying topological
insulators and superconductors in a unified way solely from
their symmetry class.16–19

The specificity of the cylindrical surface is that it is flat in the
sense that it has everywhere a vanishing Gaussian curvature.
On the surface of a topological insulator of more generic
shape or geometry yielding a finite curvature, the effect of
spin-to-surface locking mentioned earlier will be modified by
that of a finite curvature. A spherical surface of a topological
insulator20 is a prototypical example in which such an interplay
is expected. We show in this paper that the two effects are both
expressed in terms of a Berry phase, but of contrasting nature
(see Table I). The two types of Berry phase both contribute
to the formation of a finite-size energy gap. The resulting
surface electronic spectrum on the sphere is shown to have
a substantial compatibility with the result of tight-binding
calculations performed for a cubic system (for tight-binding
calculation involving the bulk, cubic implementation is much
more straightforward). A related but different scenario on
the fate of such a (planar) gapless Dirac cone embedded on
the curved spherical surface has been proposed in the study
of the electronic states in fullerene.21–25

In addition to the spectrum, the structure of the surface
spinor wave function is another highlight of the paper. On the
curved spherical surface of a topological insulator the strong
spin-orbit coupling in the bulk, combined with the twisting of
the phase shift due to the two types of Berry curvature, leads to
a nontrivial spin texture. By explicitly constructing the surface
spinor wave function we reveal such a rich spin texture possibly
realized on the surface of topological insulator nanoparticles.

The paper is organized as follows. In Sec. II the effective
surface Dirac theory is derived from the gapped bulk Hamil-
tonian, in which two types of Berry phase appear. The nature
of these two types of Berry phase is discussed and contrasted
in Sec. III. The solution of the effective surface Dirac equation
is given explicitly in Sec. IV. The surface wave function is
shown to be expressed in terms of the Jacobi’s polynomials.
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TABLE I. Characterization of the two types of Berry phase manifesting on the surface of a spherical topological insulator.

Type (A) (B)

(Geometrical) origin Curvature in the polar (θ ) direction; effect of closing Effect of rolling the surface in the
the surface at the north and south poles azimuthal (φ) direction

Appearance In the covariant derivatives, or −i∂φ → −i∂φ + 1/2
(where, how) ∂θ → ∂θ + 1

2 cot(θ/2)

Shifting the spectrum? Yes Yes

Relation to spin-to-surface Breaks the locking Expression of the (tendency to)
locking spin-to-surface locking

Sensitivity to the choice No Yes
of basis

Other examples? Fullerene (buckyball) Cylindrical TI

The obtained discrete energy spectrum is compared with the
result of (bulk) tight-binding calculation in Sec. V. This leads
us to our conclusions. Some details of the formulation are left
to the Appendices.

II. DERIVATION OF THE SURFACE EFFECTIVE
HAMILTONIAN

Let us first derive an effective “Dirac operator” on the spher-
ical surface, starting with a bulk Hamiltonian. Our starting
point is the following gapped bulk effective Hamiltonian26,27

in the continuum limit:

Hbulk = ε( p)1 + m( p)τz + Aτx(pxσx + pyσy + pzσz), (1)

describing a three-dimensional (3D) Z2 topological insulator,
where

m( p) = m0 + m2
(
p2

x + p2
y + p2

z

)
(2)

is a (generalized) mass term containing both the constant and
quadratic (Wilson) terms. For simplicity we have chosen the
Wilson term to be isotropic. The two types of Pauli matrices
σ = (σx,σy,σz) and τ = (τx,τy,τz) represent, respectively, the
real and orbital spin degrees of freedom, and 1 is the 4 × 4
identity matrix. The Hamiltonian (1) is time-reversal invariant,
that is, invariant under the operation of 	 = iσyK , where
K represents complex conjugation. The two types of Pauli
matrices represent independent degrees of freedom acting on
spinors living in a different space. To make this point explicit
one may express Eq. (1) in the following 4 × 4 matricial form,

Hbulk = ε( p)1 +

⎡⎢⎣m( p) Apz 0 Ap−
Apz −m( p) Ap− 0

0 Ap+ m( p) −Apz

Ap+ 0 −Apz −m( p)

⎤⎥⎦ ,

(3)
where p± = px ± ipy .

In the following demonstration we choose ε( p) to be
null so that the spectrum can be symmetric with respect to
E = 0 (particle-hole symmetric). The vanishing of the ε( p)1
term upgrades the symmetry of the model from class AII
to DIII (see Appendix A for details), but leaves unchanged
the distinction between topologically trivial (m0/m2 > 0) and
nontrivial (m0/m2 > 0) phases. Note that the minimal model

we consider contains only three control parameters, m0, m2,
and A. We also consider the spherical geometry, assuming that
the topological insulator described by Eqs. (1) and (2) occupies
the interior of a sphere of radius R. We introduce standard
3D spherical coordinates: (r,θ,φ) related to the Cartesian
coordinates as

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (4)

The momentum components (px,py,pz) in Eq. (3) expressed
in the Cartesian coordinates are rewritten in terms of the
derivatives with respect to the spherical coordinates (r,θ,φ) by
following standard procedure. We also introduce unit vectors r̂ ,
θ̂ , and φ̂ pointed, respectively, in the direction of the increase
of (r,θ,φ). The momentum operator p = px x̂ + py ŷ + pz ẑ
can be reprojected onto the directions of such unit vectors
in the spherical coordinates as p = pr r̂ + pθ θ̂ + pφφ̂, where
pr = −i(∂r + 1/r), pθ = −i∂θ/r , and pφ = −i∂φ/(r sin θ ).

To derive the surface effective Hamiltonian in the spirit of
k · p approximation, we divide Hbulk into two parts: Hbulk =
H⊥ + H‖, where H⊥ = H |pθ=0,pφ=0, and first solve the radial
eigenvalue problem

H⊥|ψ〉 = E⊥|ψ〉, (5)

instead of Hbulk|ψ〉 = E|ψ〉. Let us consider a possible form
of the surface solutions of Eq. (5). |ψ〉 may take the following
form:

|ψ〉 = |ψ(r,θ,φ)〉 = eκ(r−R)|u(θ,φ)〉, (6)

where κ−1 measures the penetration of the surface wave
function into the bulk. Here, taking a linear combination of
the solutions of the form of Eq. (6), we construct a solution of
Eq. (5) which is compatible with the boundary condition13,26–28

|ψ(r = R)〉 = 0, (7)

that is, the condition that all four components of the wave
function ψ vanish on the surface of the sphere (at r = R). As
shown in Appendix B, this can be matched by superposing
two damped solutions of the form of Eq. (6). Importantly, the
solutions of such a boundary value problem must satisfy the
zero-energy condition (B14), that is, the (surface) Dirac point
is at E = 0 in our model.

The zero-energy condition (B14) helps simplify the solution
of the radial eigenvalue problem (5). Since E⊥ = 0, solving

235119-2
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Eq. (5) is equivalent to finding ψ that satisfies29,30

τzH⊥|ψ〉 = 0, (8)

where for |ψ〉 taking the form of Eq. (6),

τzH⊥|ψ〉 = [m⊥[κ] + τyAκ r̂ · σ ]|ψ〉, (9)

where m⊥[κ] = m0 − m2κ
2. This implies that the orbital part

of the eigenspinor u(θ,φ) can be chosen as an eigenstate of τy ,

τy |τy±〉 = ±|τy±〉. (10)

To fix the notation, let us express the explicit vectorial
representation of |τy±〉 as

|τy+〉 = 1√
2

[
1
i

]
, |τy−〉 = 1√

2

[
1
−i

]
. (11)

The real spin part of Eq. (9) can be also diagonalized by
pointing the eigenstates of σz in the direction of r̂ , that is, by

|r̂+〉 = 1√
2

[
e−iφ/2 cos θ

2

eiφ/2 sin θ
2

]
,

(12)

|r̂−〉 = 1√
2

[
e−iφ/2 sin θ

2

−eiφ/2 cos θ
2

]
.

Combining these two types of spinors, one can compose the
spinorial part of ψ that can be matched with the condition (8),
leading to

[m⊥[κ] + κAαβ]|r̂α〉β = 0, (13)

where

|r̂α〉β = |r̂α〉 ⊗ |τyβ〉. (14)

Equation (13) implies

κ = −αβA ±
√

A2 + 4m0m2

2m2
. (15)

The radial part of the wave function ρ(r) that is compatible
with the boundary condition (7) takes the form given in
Eq. (B9), here, with κ± being the two solutions of Eq. (15).
Clearly both κ+ and κ− must be positive for the wave function
ψ to describe a surface state localized in the vicinity of
the spherical surface (r � R). Thus, in order to cope with
the boundary condition, one must have both αβ < 0 and
m0m2 < 0 for the choice of model parameters such that
A/m2 > 0. Notice that the second condition m0m2 < 0, which
has appeared here automatically from the boundary condition,
is a requirement for the system to be in the topologically
nontrivial phase.

We have thus successfully found the two basis eigenstates
of H⊥ for constructing the effective surface Hamiltonian. For
simplicity of the notation we denote them as ψ = |±〉〉, where

|+〉〉 = ρ(r)|r̂+〉−, |−〉〉 = ρ(r)|r̂−〉+. (16)

To avoid misunderstanding of the notations let us express
explicitly the four-component vectorial form of |r̂±〉∓,

|r̂+〉− = 1

2

⎡⎢⎢⎣
[ 1
−i

]
e−iφ/2 cos θ

2[ 1
−i

]
eiφ/2 sin θ

2

⎤⎥⎥⎦ ,

(17)

|r̂−〉+ = 1

2

⎡⎢⎢⎣
[ 1

i

]
e−iφ/2 sin θ

2

−
[ 1

i

]
eiφ/2 cos θ

2

⎤⎥⎥⎦ .

Here the arrangement of the basis is made in accordance with
that of Eq. (3). Notice that the eigenvectors of Eq. (17) are
double valued with respect to the azimuthal angle φ. This does
not happen for the polar angle θ since the domain of definition
for θ is restricted to a finite range θ ∈ [0,π ] and not periodic, in
contrast to φ. The double valuedness stems from our choice of
the (arbitrary) phase factor in front of Eq. (12). This is, on the
other hand, merely a choice, and one can equally formulate
the same problem consistently using a pair of single-valued
eigenvectors. We leave further arguments on this point to
Sec. III and here take these double-valued eigenvectors as
a basis for constructing the surface effective Hamiltonian.

The effective surface “Hamiltonian” Hdv acts on a two-
component spinor,

α =
[

α+
α−

]
. (18)

Within the k · p approximation any surface state |α〉〉 can be
represented as a linear combination of |+〉〉 and |−〉〉 with the
amplitude specified, respectively, by α+ and α−, that is,

|α〉〉 = α+|+〉〉 + α−|−〉〉 (19)

and [ 〈〈+|H‖|α〉〉
〈〈−|H‖|α〉〉

]
≡ Hdvα. (20)

The explicit form of Hdv can be determined by evaluating
each of the matrix elements H‖ against the basis vectors |±〉〉,
that is, 〈〈±|H‖|∓〉〉. The procedure we follow here is precisely
in parallel with that of the standard degenerate perturbation
theory. H0 = H⊥ is an unperturbed Hamiltonian and |±〉〉 are
its (twofold) degenerate eigenstates. To find the (degeneracy-
lifted) spectrum of the perturbed Hamiltonian Htot = H0 + H ′,
where H ′ = H‖, Htot = Hbulk, we first calculate the matrix
elements 〈〈α|H ′|β〉〉 ≡ (Hdv)αβ (α,β = ±), then diagonalize
this 2 × 2 coefficient matrix.

The explicit matrix form of H‖ is

H‖ =

⎡⎢⎣ m‖ −iADz 0 −iAD−
−iADz −m‖ −iAD− 0

0 −iAD+ m‖ iADz

−iAD+ 0 iADz −m‖

⎤⎥⎦ , (21)

where D± and Dz are defined in Eqs. (B1) and (B2).
Performing the r integral in 〈〈α|H‖|β〉〉 one can safely replace
the r dependence in these expressions with the radius R of
the sphere, assuming that the surface wave function is well
localized in the vicinity of the surface. Alternatively, one can
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equally regard D± and Dz as

D± � e±iφ

R

[
cos θ

∂

∂θ
± i

sin θ

∂

∂φ

]
, Dz �− sin θ

R

∂

∂θ
. (22)

At leading order in the expansion with respect to 1/R the
diagonal terms of H‖ can be neglected since

m‖ = m2
L2

r2
∼ 1

R2
(23)

[see also Eqs. (B3) and (B5)]. Within this accuracy the
coefficient matrix Hdv is found, after some algebra, to be

Hdv = A

R

[
0 −∂θ + i∂φ

sin θ
− cot θ

2

∂θ + i∂φ

sin θ
+ cot θ

2 0

]
. (24)

Apart from an overall constant in front of the expression, this
can be identified as the “Dirac operator” for a free massless
fermion on the sphere.21–25,31–33

The origin of the Berry phase term can be attributed to the
covariance of the derivatives ∂θ and ∂φ on a curved spherical
surface.21–25 In this regard, the Berry phase term appears as a
spin connection in Dφ as

Dφ = ∂φ + iσz

2
cos θ, (25)

replacing ∂φ in Eq. (24) as

Hdv = A

[(−i∂θ

R

)
σy −

( −iDφ

R sin θ

)
σx

]
. (26)

Alternatively, the Berry phase term can be absorbed in ∂θ by
introducing

∂̃θ = ∂θ + 1
2 cot θ. (27)

In terms of ∂̃θ , the Dirac operator (24) can be also rewritten as
(cf. Table I)

Hdv = A

R

[
0 −∂̃θ + i∂φ

sin θ

∂̃θ + i∂φ

sin θ
0

]

= A

[(−i∂̃θ

R

)
σy −

( −i∂φ

R sin θ

)
σx

]
. (28)

III. NATURE OF THE TWO TYPES OF BERRY PHASE

The advantage of considering the spherical geometry is that
the existence of two different types of Berry phase becomes
apparent; each associated, respectively, with an electronic
motion in the polar (θ ) [type (A)] and azimuthal (φ) [type (B)]
directions (see Table I). The type (A) Berry phase is intrinsic
to the curvature of the spherical surface, while the type (B)
is associated with the so-called spin-to-surface locking. For
a cylindrical surface, on the contrary, only the latter [type
(B)] manifests since the cylindrical surface has a vanishing
Gaussian curvature. The contrasting behaviors of the two types
of Berry phase are summarized in Table I.

To highlight the distinct behaviors of the two types of Berry
phase, let us reconsider the Dirac operator (24) expressed
against the double-valued basis vectors (17). As mentioned
earlier, this was not a unique choice of the basis. One can

equally choose them to be single valued as

|+〉〉 = 1

2

⎡⎢⎢⎣
[ 1
−i

]
cos θ

2[ 1
−i

]
eiφ sin θ

2

⎤⎥⎥⎦ ,

(29)

|−〉〉 = 1

2

⎡⎢⎢⎣
[ 1

i

]
sin θ

2

−
[ 1

i

]
eiφ cos θ

2

⎤⎥⎥⎦ .

This type of a single-valued choice of the basis is often
employed in the k · p description of the electronic states in
graphene.7 Once this choice of basis vectors is adopted, one
can repeat the same procedure as we described in the last
section to find the surface effective Hamiltonian Hsv, or the
Dirac operator in this basis, as

Hsv = A

R

[
0 −∂θ + i∂φ

sin θ
− 1

2 cot θ
2

∂θ + i∂φ

sin θ
− 1

2 tan θ
2 0

]
.

(30)

In passing from Eq. (24) to (30), the matrix elements are
replaced as

− i∂φ → −i∂φ + 1
2 . (31)

Here the additive factor 1/2 is nothing but the Berry phase
π associated with the spin-to-surface locking in cylindri-
cal surfaces that has been extensively discussed in the
literature.9–13

The appearance of the type (A) Berry phase (see
Table I) is not restricted to the topological insulator surface
state. It has already appeared in the study of the electronic
spectrum of fullerene, typically the one called “buckyball”
(or Buckminsterfullerene).21–25 The type (B) Berry phase, on
the contrary, is specific to the topological insulator surface
state. By its nature whether this type of Berry phase appears
explicitly in the effective Dirac operator depends on the
choice of the basis. In Hdv [Eq. (24)] the Berry phase is
superficially hidden in the antiperiodicity of the basis spinor
(17) with respect to the azimuthal angle φ. When one considers
the orbital part of the wave function or spinor (18), this
point must be carefully taken into account in its periodicity
with respect to φ. This point will be clarified in the next
section.

The Berry phase term, or more precisely the spin connection
of the form of ± cot θ/2 in Eq. (24), or equivalently either
cot(θ/2)/2 or tan(θ/2)/2 in the two off-diagonals of Eq. (30),
can be interpreted as a vector potential generated by an
effective magnetic monopole. Indeed, the magnetic field
associated with a magnetic monopole of strength g can be
successfully encoded in a vector potential, for example,

AI = g

4πr
tan

θ

2
φ̂, (32)

AII = −g

4πr
cot

θ

2
φ̂, (33)

by introducing the concept of Dirac’s string. Here AI and AII

correspond to a choice of the gauge in which the Dirac’s string
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runs, respectively, on the −z (+z) axis [direction of the south
(θ = π ) vs north (θ = 0) poles]. Equations (24) and (30) imply
that the strength of the “induced” monopole is, respectively,
g = −2π for α+, and g = 2π for α−. A fictitious magnetic
monopole of an opposite charge is effectively induced at the
center of the sphere for the two spin components of the surface
spinor wave function (18) [see also Eq. (42)].

IV. SURFACE EIGENSTATES ON THE SPHERE

To find the electronic spectrum of the spherical topological
insulator surface state, one needs to solve the surface Dirac
equation

Hdvα = E‖α (34)

explicitly. In accordance with the decomposition of the
Hamiltonian Hbulk = H⊥ + H‖, we have also separated the
energy eigenvalue E of the original eigenvalue equation

Hbulk|α〉〉 = E|α〉〉 (35)

into two parts: E = E⊥ + E‖. But, of course, since E⊥ = 0
[Eq. (B14)], E = E‖. As we have already emphasized, there
exists some freedom in the choice of basis vectors, but
here mainly to ease comparison with the literature we take
them double valued as in Eq. (17). To solve the eigenvalue
equation (34) explicitly we first separate the variables as
α(θ,φ) = eimφαm(θ ), or in terms of the components,[

α+(θ,φ)
α−(θ,φ)

]
= eimφ

[
αm+(θ )
αm−(θ )

]
. (36)

Clearly the quantum number m signifies physically the
z component of the orbital angular momentum. Here the
important point is that this m takes half-odd integral values

m = ± 1
2 , ± 3

2 , ± 5
2 , . . . (37)

in contrast to the case of fullerene.21,22,25 Any solution of
the original Schrödinger equation Hbulk|ψ〉 = E|ψ〉, or its
surface solution |α〉〉 [see Eq. (19)], obeys to a periodic
boundary condition with respect to φ. To be explicit, any bulk
(or surface) solution |ψ〉 = |ψ(r,θ,φ)〉 satisfies |ψ(r,θ,φ +
2π )〉 = |ψ(r,θ,φ)〉, and in the same sense,

|α(θ,φ + 2π )〉〉 = |α(θ,φ)〉〉. (38)

On the other hand, the basis spinor (17) spanning the space
of the surface solutions |α(θ,φ)〉〉 [Eq. (19)] is antiperiodic
with respect to 2π rotation of the azimuthal angle, that is,
|±〉〉 → −|±〉〉 under φ → φ + 2π . In order to ensure the
periodicity of the total wave function (38) this minus sign must
be compensated or absorbed in the prefactor α± = α±(θ,φ) of
Eq. (19), that is, α±(θ,φ + 2π ) = −α±(θ,φ).

In terms of αm+(θ ) and αm−(θ ), the eigenvalue equation (34)
becomes a couple of first-order linear differential equations,

−A

R

[
d

dθ
+ m

sin θ
+ cot θ

2

]
αm−(θ ) = E‖αm+(θ ),

(39)
A

R

[
d

dθ
− m

sin θ
+ cot θ

2

]
αm+(θ ) = E‖αm−(θ ).

These two equations combine to give[
1

sin θ

d

dθ
sin θ

d

dθ
− 1

sin2 θ

(
m − σ

2
cos θ

)2

+ λ2 − 1

2

]
×αmσ (θ ) = 0, (40)

in which two important parameters σ and λ have been
introduced. σ = ± specifies the spin index in the subscript
of αmσ , whereas λ parametrizes the energy as

E‖ = A

R
λ. (41)

Let us remark here that Eq. (40) is formally equivalent
to a differential equation defining the so-called monopole
harmonics,34 the latter describing (the angular part of) the
electronic motion in the presence of a magnetic monopole. The
role of the nontrivial Berry curvature imposed by the spherical
geometry can be thus interpreted as an effective magnetic
monopole induced at the center of the sphere. An electron in the
surface state of a spherical topological insulator “sees” such an
effective magnetic monopole and behaves accordingly. In the
notation of Ref. 34, the quantum number q specifies physically
the strength g of the effective magnetic monopole placed at
the origin as g = 4πq. The Dirac’s quantization condition
restricts the “allowed” value of this quantum number q to
be half integral q = 0,±1/2,±1, . . . . Here, in Eq. (40), q is
identified as

q = −σ

2
= ±1

2
. (42)

The eigenfunction αmσ (θ ) of Eq. (40) is indeed related
to the monopole harmonics specified by this value of q.
Thus at the center of a spherical topological insulator, a
magnetic monopole of strength ±2π , the smallest finite
value compatible with the Dirac’s quantization condition is
effectively induced. By its nature the induced monopole is
automatically regularized by a Dirac’s string.

Introducing a new independent variable ζ = cos θ , one can
rewrite Eq. (40) as23[

d

dζ
(1 − ζ 2)

d

dζ
− m2 − σmζ + 1/4

1 − ζ 2
+ λ2 − 1

4

]
αmσ = 0.

(43)

This can be further rewritten in the form of a Jacobi-type dif-
ferential equation. As shown below, its normalizable solutions
are known to be expressed in terms of Jacobi polynomials
P

μν
n [ζ ] (see Appendix C for our conventions). Changing the

dependent variables as

αmσ [ζ ] = (1 − ζ )
1
2 |m− σ

2 |(1 + ζ )
1
2 |m+ σ

2 |βmσ [ζ ], (44)

and using the fact that m is half-integral [Eq. (37)], one can
verify [

(1 − ζ 2)
d2

dζ 2
+

{
σ

m

|m| − (2|m| + 2)ζ

}
d

dζ

− |m|(|m| + 1) + λ2 − 1

4

]
βmσ [ζ ] = 0. (45)
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Comparing this with the standard form of the Jacobi’s
differential equation [cf. Eq. (C3)],[

(1 − ζ 2)
d2

dζ 2
+ {ν − μ − (μ + ν + 2)ζ } d

dζ

+ n(n + μ + ν + 1)

]
P μν

n [ζ ] = 0, (46)

one can identify the parameters as

μ = |m| − σ

2

m

|m| =
∣∣∣m − σ

2

∣∣∣ ,
(47)

ν = |m| + σ

2

m

|m| =
∣∣∣m + σ

2

∣∣∣ ,
and

λ2 = n(n + μ + ν + 1) + |m|(|m| + 1) + 1
4

= (
n + |m| + 1

2

)2
, (48)

where the normalizability of the wave function requires n to
be non-negative integers,

n = 0, 1, 2, 3, . . . . (49)

In Eqs. (47) σ = ± refers to the subscript of βmσ [ζ ]. The
second equality of Eqs. (47) holds since m is half-integral.
Thereby, apart from a normalization constant cnmσ , which
will be determined later, the surface wave function βmσ [ζ ]
is expressed in terms of the nth order Jacobi polynomial as

βmσ [ζ ] = βnmσ [ζ ] = cnmσP
|m− σ

2 |,|m+ σ
2 |

n [ζ ]. (50)

Clearly n is common to βm+[ζ ] and βm−[ζ ] once λ is chosen
to be an appropriate quantized value imposed by Eq. (48).
Substituting Eq. (48) into (41), one finds the surface energy
spectrum

E = E‖ = ±A

R

(
n + |m| + 1

2

)
≡ Eλ, (51)

where m and n take, respectively, half-integral and non-
negative integral values [see Eqs. (37) and (49)]. The energy
spectrum (51) has a couple of specific features.

(1) The discrete energy levels Eλ are placed with an equal
distance A/R symmetrically on the positive and negative side
of E, excluding the zero energy E = 0.

(2) The degeneracy gλ of each energy level increases
linearly with |E|, taking every (positive) even numbers gλ =
2, 4, 6, . . . when one starts counting it at the first positive and
negative energy level with λ = ±1.

The discrete energy levels Eλ can be also cast from the
view of finite-size energy gap. On the surface of an infinitely
long cylinder the surface electronic spectrum shows an energy
gap as a consequence of the spin-to-surface locking and the
resulting half-integer quantization analogous to Eq. (37). The
size of the obtained energy gap on a cylindrical surface is
inversely proportional to the radius of the cylinder. Here in
Eq. (51) the zero energy E = 0 is indeed excluded, which
can be regarded as a remnant of the energy gapped in the
continuous spectrum. Note that this has nothing to do with the
discreteness of the spectrum due to finite-size “quantization.”
What counts here is the absolute position of the entire (discrete)

spectrum. The size of the “energy gap”

�(R) = E1 − E−1 = 2A

R
(52)

is again inversely proportional to R, the radius of the sphere.20

In order to determine the relative magnitude and phase of
cnm+ and cnm−, one needs to go back to Eqs. (39) and substitute
βmσ [ζ ] obtained as in Eqs. (50) into this couple of equations.
This is straightforward, but turns out to be rather tedious work.
Leaving an explicit demonstration of this to Appendix D, here
we refer only to its result

cnm− = −sign[λm]cnm+. (53)

Choosing cnm+ to be real, and taking the normalization

2π

∫
d(cos θ )|αnm(θ )|2 = 1 (54)

also into account [cf. Eq. (C6) for the normalization of P
μν
n [ζ ]],

one can give an explicit list of the coefficients cnmσ in which

cnm+ = 1√
2π

√
n!(n + 2|m|)!

2|m|+1/2(n + |m| − 1/2)!
. (55)

In Eq. (54) we introduced the notation αnm(θ ), that is, αm(θ ) =
αnm(θ ), in accordance with Eq. (50).

As a solution of the effective surface Dirac equation (34),
Eqs. (55), (53), (50), and (44) specify an explicit form of the
surface eigenspinor α(θ,φ) = eimφαnm(θ ), with a definite half-
integral angular momentum m. It may be suggestive to give
a few concrete examples of αnm(θ ) for small values of n and
|m|. For simplicity let us restrict ourselves to the case of λ > 0
(positive energy). For n = 0 with an arbitrary half-integral m,
αnm(θ ) is found to be

α0m(θ )

= 1√
4π

√
(2|m|)!(|m| − 1

2

)
!

⎡⎣ (
sin θ

2

)|m− 1
2 | (

cos θ
2

)|m+ 1
2 |

−sm

(
sin θ

2

)|m+ 1
2 | (

cos θ
2

)|m− 1
2 |

⎤⎦ ,

(56)

where sm is an abbreviated notation for

sm = sign[m] = m

|m| . (57)

More specifically,

α0 1
2

=
[

α0 1
2 +

α0 1
2 −

]
= 1√

4π

[
cos θ

2

− sin θ
2

]
, (58)

α0,− 1
2

= 1√
4π

[
sin θ

2

cos θ
2

]
, (59)

α0 3
2

=
√

3

2π

[
sin θ

2 cos2 θ
2

− sin2 θ
2 cos θ

2

]
, (60)

α0,− 3
2

=
√

3

2π

[
sin2 θ

2 cos θ
2

sin θ
2 cos2 θ

2

]
. (61)
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For n = 1 and m = ±1/2,

α1 1
2

= − 1

2
√

2π

[
cos θ

2 (1 − 3 cos θ )

sin θ
2 (1 + 3 cos θ )

]
, (62)

α1,− 1
2

= 1

2
√

2π

[
sin θ

2 (1 + 3 cos θ )

− cos θ
2 (1 − 3 cos θ )

]
. (63)

The two eigenstates (58) and (59) constitute the two lowest
energy (degenerate) eigenstates on the E > 0 side, whereas
Eqs. (60)–(63) correspond to the four second lowest (first
excited) states.

Let us point out that the surface spinor wave functions
thus constructed imply a rich spin texture that the surface
eigenstates manifest. This can be already seen in the simplest
example, the case of the eigenstate α0 1

2
given as in Eq. (58).

At the north pole (θ = 0) the spin in this eigenstate is pointed
in the +z direction, perpendicular to the tangential plane of
the sphere at this point. As θ increases, the spin tends to
lie closer to the tangential plane. At θ = π/2, that is, on
the equator, the spin is completely in-plane to the spherical
surface. Now, staying at θ = π/2, if one lets φ vary from 0
to 2π , that is, as the electron hypothetically travels around
the equator, the spin also completes a 2π rotation in the (x,y)
plane, manifesting the feature of “spin-to-surface locking.” As
one further increases θ , the spin-down component starts to
dominate, before it dominates completely at the south pole.

Another example showing a more complicated spin texture
is the case of α1 1

2
(θ ) given as in Eq. (62) [the two spin

components of α1 1
2
(θ ) are depicted in Fig. 1]. At the north

pole the spin in this eigenstate is again pointed in the +z
direction. As θ increases, it starts to lie, but tends to lie more
strongly than the case of α0 1

2
. At

θ = 2 arccos
3 + √

5

6
� 0.232π ≡ θ1 (64)

the two spin components acquire an equal weight. At this angle
θ = θ1, if one lets φ vary from 0 to 2π , complete spin-to-

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3

0.4

1,
1
2

FIG. 1. (Color online) θ dependence of the two spin components
of α1 1

2
(θ ). α1 1

2 +(θ ) and α1 1
2 −(θ ) shown, respectively, in red and in

blue. The two spin components acquire an equal weight at θ = θ1 �
0.232π , θ = π/2, and at θ = π − θ1. α1 1

2 +(θ ) vanishes at θ = θ2 �
0.392π and at θ = π , whereas α1 1

2 −(θ ) vanishes at θ = 0 and at
θ = π − θ2.

surface locking occurs. As θ exceeds θ1, the |r̂−〉 component
starts to dominate. At

θ = arccos[1/3] � 0.392π ≡ θ2 (65)

the centrifugal spin component α1 1
2 +(θ ) vanishes. Therefore,

at this point the |r̂−〉 component dominates completely, and
the spin is pointed to the center of the sphere. As θ further
increases, the spin gradually tilts back to the tangential plane
(at θ = π/2, spin-to-surface locking is recovered), then it
starts to be further tilted toward the outside of the sphere. At
θ = arccos[−1/3] = π − θ2, the centripetal spin component
α1 1

2 −(θ ) vanishes, and the spin finds itself purely in the |r̂+〉
state. At θ > π − θ2, |r̂−〉 starts to dominate again, and the
spin is finally pointed in the +z direction at the south pole.
The behavior of the spin as it varies φ from 0 to 2π is the same
as the case of α0 1

2
since the two states share the same quantum

number m = 1/2.
The spin also rotates more drastically in the φ direction

for the eigenstates with |m| � 3/2. Clearly the surface spinor
wave functions with quantum numbers n and |m| higher than
the examples given in Eqs. (58)–(63) show a richer spin
structure on the spherical surface as a consequence of the
interplay between the two types of Berry phase; cf. the case
of cylindrical geometry in which only a single type of Berry
phase manifests.

V. COMPARISON WITH THE TIGHT-BINDING
CALCULATION

We have so far investigated specific features of the topolog-
ical insulator surface state occupying a finite volume, taking
as an example the case of spherical geometry. Starting with the
gapped bulk effective Hamiltonian, we have derived and solved
the surface Dirac equation, from which we have deduced the
surface electronic spectrum (51) and the explicit form of the
spinor wave functions [as given through Eqs. (44), (50), (53),
and (55)] on a perfect spherical surface. The role of two
distinct types of Berry phase has been revealed. Here we take
another viewpoint; namely, we go back to the bulk effective
Hamiltonian [Eq. (1)] and implement it as a nearest-neighbor
tight-binding model, which allows for obtaining the spectrum
of the surface solutions by exact diagonalization. We show
that the basic features on the surface energy spectrum we
have found so far in the idealized spherical geometry with
exact rotational symmetry is still valid when that symmetry is
weakly broken.

Let us employ the following lattice implementation of Hbulk

[i.e., Eq. (1)] on a cubic lattice:

Hlattice = τzm(k) + Aτx

∑
j=x,y,z

σj sin kj , (66)

where

m(k) = m0 + 2
∑

j=x,y,z

m2(1 − cos kj ) (67)

is a lattice version of Eq. (2). The model specified by Eqs. (66)
and (67) can be regarded as a tight-binding model with only the
nearest neighbor hopping. This couple of equations determine
the structure of energy bands over the entire Brillouin zone,
which also reproduces, in the vicinity of the � point, the
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FIG. 2. (Color online) Pseudodegenerate spectrum E[J ] of the
surface eigenstates, obtained by diagonalization of the tight-binding
Hamiltonian on a cubic lattice. The system has a cubic shape of linear
dimension L = 16. m0/m2 = −1, A = 1.

bulk effective Hamiltonian Hbulk [Eq. (1)] in the continuum
limit. The system we consider here has a cubic shape of linear
dimension L, in which the lattice points placed with a unit
lattice spacing are restricted to

1 � x,y,z � L. (68)

The obtained surface energy spectrum E = E[J ] is shown
in Fig. 2. Here J is an index for numbering each surface
eigenstate with an increasing order of E. For an aesthetic
reason, and also to ease counting of the degree of (pseudo-)
degeneracy, we have chosen this index J to be half-integral
J = ±1/2, ±3/2, . . .. Numbering of the eigenstate is done in
such a way that starting with E = 0, J = 1/2, 3/2, 5/2, . . .

is attributed to each eigenstate with increasing (decreasing)
order of E on the positive (negative) E side [i.e., a positive
(negative) J corresponds to a positive (negative) energy level].
Depending on the number of lattice sites contained in the
system (=L3) and on the value of model parameters, certain
numbers of states appear in the bulk energy gap. Those surface
eigenstates of relatively small |E| < m0 are also characterized
by the spatial profile of the corresponding wave function; their
wave function is localized in the vicinity of the cubic surface.
In this demonstration, the system’s size is L = 16, and the
model parameters are chosen as m0/m2 = −1, A = 1.

E = E[J ] plotted in Fig. 2 shows a “pseudodegenerate”
feature very reminiscent of the quantization characteristic on
the spherical surface, the spectrum (51), and the degeneracy
rule [Eqs. (49) and (37)]. Notice that the zero-energy state
E = 0 is clearly excluded. Horizontal gridlines are located
at the positions of E that are an integer multiple of E[1],
the first (positive) energy level. These gridlines are shown for
verifying that the energy levels are equally placed, one of the
characteristic features of the spectrum on the spherical surface.
Small deviation from the “expected” spectrum (51) can be seen
for |λ| > 3, which can be interpreted as a consequence of the
breaking of spherical symmetry. Vertical gridlines are drawn
for highlighting the degree of the pseudodegeneracy of each
level. If one recalls that a magnetic monopole is effectively
induced at the center of the sphere, the (pseudo-) equally
spaced spectrum illustrated in Fig. 2 can be interpreted as

Landau levels. For L = 16 the value of E[1] is found to
be E[1] � 0.0880 in units of h̄A/a, where A is the group
velocity of the surface state, and a is the lattice constant. Taking
experimentally realistic values for A and a,27 the characteristic
energy scale h̄A/a is estimated to be on the order of 0.1–1 eV.

VI. CONCLUDING REMARKS

The protected surface state of a topological insulator has
an “active” property that it reveals only when it is embedded
onto a curved surface. On a cylindrical surface, it induces
an effective magnetic solenoid of total flux ±π . In the same
sense, a magnetic monopole of strength ±2π is induced
when it is embedded onto a sphere. In this paper we have
explicitly examined this active property of the topological
insulator surface state, focusing on a most suggestive case of
the spherical surface. As a result, the following unique profile
of such surface states has been found. The two important
features are

(1) A unique quantization rule; equally spaced spectrum
with the exception of the “evaporated” zero-energy state, and
the simple degeneracy rule.

(2) A rich spin texture resulting from the nature of compli-
cated spinor wave function.
These characteristic features derived analytically using an
idealized spherical geometry is then contrasted with a tight-
binding calculation on a cubic lattice of cubic shape. Un-
expectedly profound agreement of the two results suggests
that those features which we have demonstrated on a perfect
sphere capture the essential characteristic of the surface states
occupying a finite volume of a more generic shape, inevitably
involving a curved surface. In this sense it is natural to expect
that the obtained spectrum be applicable to the spectroscopy of
topological insulator nanoparticles. In particular, we predict
a unique photoabsorption/emission spectrum resulting from
the equally spaced energy levels of the low-energy surface
eigenstates.

Most of the existing works characterizing the topological
insulator surface states are based on Bloch states. Topological
properties, however, do not depend on the translational
symmetry. Here we have demonstrated this, focusing on the
angular momentum35–37 (instead of the linear momentum) as
the good quantum number.
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APPENDIX A: SYMMETRY CLASS AND
TOPOLOGICAL INVARIANTS

In the classification of the Dirac Bogoliubov–de Gennes
type Hamiltonian in terms of the time-reversal (	), particle-
hole (C), and chiral (�5) symmetries,15–19,38 our starting
bulk effective Hamiltonian (1) falls on the class of AII, to
which Z2 topological insulators in two (2D) and three spatial
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(3D) dimensions are classified. This class of models has the
symmetry 	2 = −1, C2 = 0, and �5 = 0 (here “0” indicates
that the system does not possess that type of symmetry), and
are characterized by Z2-type bulk topological invariants both
in 2D39 and 3D.40–42 For the specific choice ε( p) = 0, this
symmetry is upgraded to class DIII, yielding 	2 = −1, C2 =
1, and �5 = 1, where for the specific Hamiltonian (1) C and
�5 are given by C = σyτyK and �5 = τy . This symmetry class
obeys to aZ-type bulk topological classification, characterized
by a winding number N for the Wilson-Dirac-like operator in
three dimensions.

In the following we explicitly construct and evaluate this
Z-type winding number N . Here, to ease the notation, we
rewrite Eq. (1) in the specific case of ε( p) = 0 as

H = Aτ1σμpμ + τ3m( p), (A1)

where μ = 1, 2, 3 and m( p) ≡ m0 + m2p
2
μ. Note that

H 2 = A2p2
μ + m2( p) ≡ R2( p)1. (A2)

Therefore, a deformed Hamiltonian

H̃ ≡ H

R
(A3)

has eigenvalues ±1. To characterize the topological property
of H̃ , let us make a rotation in the τ space such that τ1 → τ2,
τ2 → τ3, τ3 → τ1. Then the Hamiltonian is converted into

H̃ → Aτ2σμpμ + τ1m( p)

R

= 1

R

(
m( p) − iAσμpμ

m( p) + iAσμpμ

)
≡

(
Q( p)

Q†( p)

)
. (A4)

Here a 2 × 2 SU(2) matrix Q emerges,

Q ≡ m( p) − iAσμpμ

R
, (A5)

satisfying Q†Q = 1 and det Q = 1. Since π3[SU(2)] = Z,
Q should be characterized by an integer winding number
generically.

The winding number N is defined by

N = 1

24π2

∫
tr (Q†dQ)3

= 1

24π2

∫
d3p εμνρ tr (Q†∂μQ)(Q†∂νQ)(Q†∂ρQ), (A6)

where d stands for the exterior derivative with respect to
pμ, and ∂μ is the derivative with respect to pμ. For the
normalization of the above equation, see, for example, Eq. (66)
of Ref. 43.

Let us look into the nature of this winding number more
precisely. Since Q is a function of pμ, the winding number N
characterizes the mapping from R3 to SU(2). However, at the
infinity of R3, namely, |p| → ∞, Q becomes a single element
of SU(2), Q → sgn(m2)1. Therefore, in the present mapping,
the infinity |p| → ∞ can be regarded as a single point, which
make it possible to regard R3 as S3. By the use of the fact that
SU(2) ∼ S3, the winding numberN characterizes the mapping
from S3 to S3, which can be classified by π3(S3) = Z.

It is not difficult to guess the winding number in the fol-
lowing way. At the origin |p| = 0, Q = sgn(m0)1. Therefore,
if sgn(m0m2) = 1, Q can be deformed into Q = sgn(m0)1 by
taking the limit |m0| → ∞, giving rise to a trivial winding
number N = 0. On the other hand, if sgn(m0m2) = −1, Q at
|p| = 0 cannot be deformed into Q at |p| = ∞, so this case
gives N = ±1.

Let us compute the winding number N concretely. After a
tedious but straightforward calculation, one finds

εμνρ tr (Q†∂μQ)(Q†∂νQ)(Q†∂ρQ) = 12
p2 − m( p)

R4
. (A7)

We reach, therefore,

N = −12

24π2

∫
R3

d3p
m0 − m2 p2

[ p2 + (m0 + m2 p2)2]2

= −12 × (4π )

24π2

∫ ∞

0
dp

p2(m0 − m2p
2)

[p2 + (m0 + m2p2)2]2

= −1

2
[sgn(m0) − sgn(m2)]. (A8)

The last formula indicates that the system is indeed in the
topologically nontrivial (N = ±1) phase when m0 and m2

have the opposite sign, albeit in the trivial (N = 0) phase
when they have the same sign.

APPENDIX B: THE ZERO-ENERGY CONDITION

The radial eigenvalue problem considered in Sec. II has
two basic ingredients: The eigenvalue equation (5) and the
boundary condition (7) at r = R (on the surface of the sphere).
Here we prove that the solutions of this radial boundary
problem satisfies automatically the energy condition E⊥ = 0.
This observation paves the way for constructing the basis
eigenspinors given in Eqs. (17). In other “simpler” geometries,
such as the case as a semi-infinite system with a flat boundary,28

or a cylindrical system infinitely long in the axial direction,13

the scenario applies, but the explicit use of the zero-energy
condition may not be indispensable because of the simplicity
of the problem.

We first need to find the explicit matrix form of H⊥ =
Hbulk|pθ=0,pφ=0. Focus on the three-momentum operators p± =
−i∂±, pz = −i∂z that have appeared in Eq. (3), and in addition,
p2 = −∇2 in m( p). In the spherical coordinates, these can be
expressed as

∂± = e±iφ

[
sin θ

∂

∂r
+ 1

r

(
cos θ

∂

∂θ
± i

sin θ

∂

∂φ

)]
≡ e±iφ sin θ

∂

∂r
+ D±, (B1)

∂z = cos θ
∂

∂r
− sin θ

r

∂

∂θ
≡ cos θ

∂

∂r
+ Dz, (B2)

and

∇2 = ∂

∂r

2

+ 2

r

∂

∂r
+ L2

r2
, (B3)

where L2 is a square of the orbital angular momentum operator.
Since D±, Dz, and L2 involve only angular derivatives, we put
them in H‖. Keeping only the first terms of Eqs. (B1), (B2),
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and (B3), one finds

H⊥[κ] =

⎡⎢⎢⎣
m⊥[κ] −iκa 0 −iκbe−iφ

−iκa −m⊥[κ] −iκbe−iφ 0
0 −iκbeiφ m⊥[κ] iκa

−iκbeiφ 0 iκa −m⊥[κ]

⎤⎥⎥⎦ ,

(B4)

where we have assumed a surface solution of the form of
Eq. (6), and replaced the r derivatives with κ , the inverse of
the penetration depth. Equation (B4) can be indeed regarded
as a 4 × 4 c-number matrix specified by a parameter κ . We
used the notation H⊥[κ] to make this point explicit. We have
also introduced, for shortening the expression, the notations
a = A cos θ , b = A sin θ , and

m⊥[κ] = m0 − m2

(
κ2 + 2

r
κ

)
. (B5)

Here in Eq. (B5) an r dependence in the last term looks
cumbersome. But as long as the surface wave function is well
localized in the vicinity of the surface at r = R, one can safely
replace this coordinate r by a constant R. On the other hand,
as long as the same assumption is applied, this last term itself
becomes negligible since as long as κ−1 � R, the second term
is much larger than the last term.

Thanks to the symmetric structure of the matrix form of
Eq. (B4), the secular equation det |H⊥[κ] − E⊥| = 0 for the
radial eigenvalue problem (5) becomes as simple as

det |H⊥[κ] − E⊥| = {κ2A2 − m⊥[κ]2 + E2
⊥}2 = 0. (B6)

This can be regarded as a quadratic equation for κ2 under the
approximation of m⊥[κ] = m0 − m2κ

2, with its two solutions
κ2

± satisfying

κ2
+κ2

− = m2
0 − E2

⊥
m2

2

. (B7)

Now, in order to cope with the boundary condition (7), two
surface solutions of the form of Eq. (6), one with κ = κ+ and
the other with κ = κ− must be superposed, that is,

|ψ〉 = c+eκ+(r−R)u[κ+] + c−eκ−(r−R)u[κ−], (B8)

where u[κ] is an eigenvector of H⊥[κ] given in Eq. (B4).
The only way that this solution can be compatible with the
boundary condition (7) is to have simultaneously c+ + c− = 0
and u[κ+] = u[κ−], that is, |ψ〉 takes the following form:

|ψ〉 = N [eκ+(r−R) − eκ−(r−R)]u[κ+] ≡ ρ(r)u[κ+], (B9)

where N is a normalization constant.
In the reduction from Eq. (B8) to Eq. (B9), the second

condition stating that two eigenvectors belonging to different
κ’s should coincide, was crucial. Indeed, this coincidence
occurs only under a very specific condition. In order to clarify
this point, let us consider the following quantity:

�[κ] ≡ H⊥[κ] − E⊥
κ

=

⎡⎢⎢⎣
M1[κ] −ia 0 −ibe−iφ

−ia −M2[κ] −ibe−iφ 0
0 −ibeiφ M1[κ] ia

−ibeiφ 0 ia −M2[κ]

⎤⎥⎥⎦ ,

(B10)

where

M1[κ] = m⊥[κ] − E⊥
κ

, M2[κ] = m⊥[κ] + E⊥
κ

. (B11)

Notice that u[κ] is a zero-eigenvalue eigenvector of this matrix,
that is, �[κ]u[κ] = 0. In order that two of such eigenvectors
u[κ] belonging to different κ’s (=κ±), and therefore to
different �[κ]’s (�[κ+] and �[κ−]) coincide, both M1[κ] and
M2[κ] must coincide. Namely, one must have, simultaneously,
M1[κ+] = M1[κ−] and M2[κ+] = M2[κ−]. Clearly, a solution
of the form of Eq. (B9) is meaningful only when κ+ �= κ−.
Therefore, M1[κ+] = M1[κ−] signifies

κ+κ− = −m0 + E⊥
m2

, (B12)

whereas M2[κ+] = M2[κ−] leads to

κ+κ− = −m0 − E⊥
m2

. (B13)

Recalling that Eqs. (B12) and (B13) must follow indepen-
dently, one can convince oneself that the surface solution must
satisfy the zero-energy condition

E⊥ = 0. (B14)

Note that Eqs. (B12) and (B13) are consistent with Eq. (B7),
but impose a stronger constraint on the values of κ’s and E⊥.

APPENDIX C: A BRIEF REMINDER ON THE JACOBI’S
POLYNOMIALS/DIFFERENTIAL EQUATION

(1) The explicit form of the Jacobi’s polynomials is given
by the following (differential) Rodrigues’ formula:

P μν
n [ζ ] = (−1)n

2nn!

1

ρμν[ζ ]

dn

dxn
[(1 − ζ 2)nρμν[ζ ]], (C1)

where

ρμν[ζ ] = (1 − ζ )μ(1 − ζ )ν . (C2)

As is clear from its construction, Eq. (C1) can be also expressed
in the form of a contour integral (the integral Rodrigues’
formula).

(2) The Jacobi’s differential equation (46) is a simple
rewriting of the hypergeometric differential equation,[

ξ (1 − ξ )
d2

dξ 2
+ {C − (1 + A + B)ξ} d

dξ
− AB

]
×F (A,B,C,ξ ) = 0, (C3)

by the change of the independent variable,

ξ = 1 − ζ

2
, (C4)

and choice of the parameters,

A = −n, B = n + μ + ν + 1, C = μ + 1. (C5)

(3) The Jacobi’s polynomials P
μν
n [ζ ] satisfy the following

orthonormal relation:∫ 1

−1
dζρμν[ζ ]P μν

n1
[ζ ]P μν

n2
[ζ ]

= δn1n2

2μ+ν+1�(n1 + μ + 1)�(n1 + ν + 1)

n1!(2n1 + μ + ν + 1)�(n1 + μ + ν + 1)
. (C6)
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APPENDIX D: PROOF OF EQ. (53)

In order to determine the relative magnitude and phase of
cnm+ and cnm−, one needs to go back to Eqs. (39) and substitute
βmσ [ζ ] given in Eqs. (50) into this couple of equations
[naturally, the change of the dependent variables must be taken
into account; see Eq. (44)]. Changing the independent variable
from θ to ζ = cos θ , let us rewrite Eqs. (39) as

[√
1 − ζ 2

d

dζ
− m + ζ/2√

1 − ζ 2

]
αm−[ζ ] = λαm+[ζ ],

(D1)

−
[√

1 − ζ 2
d

dζ
+ m − ζ/2√

1 − ζ 2

]
αm+[ζ ] = λαm−[ζ ].

Performing the derivatives explicitly, and changing the vari-
ables from αmσ to βmσ [using Eq. (44)], one finds

[
(1 − ζ )

d

dζ
−

(
m + 1

2

)]
βm−[ζ ] = λβm+[ζ ],

(D2)[
−(1 + ζ )

d

dζ
−

(
m + 1

2

)]
βm+[ζ ] = λβm−[ζ ]

for m � 1/2, and

[
(1 + ζ )

d

dζ
−

(
m − 1

2

)]
βm−[ζ ] = λβm+[ζ ],

(D3)[
−(1 − ζ )

d

dζ
−

(
m − 1

2

)]
βm+[ζ ] = λβm−[ζ ]

for m � 1/2. Recall that βmσ ’s as given in Eq. (50)
are proportional to the nth order Jacobi’s polynomial.
Equations (D2) and (D3) can be further simplified on account
of the following identities [cf. Eqs. (A.7a) and (A.7b) of
Ref. 23], applicable to the derivative of the Jacobi’s poly-
nomials with a specific choice of parameters μ and ν that are

implied in these relations through Eq. (50), that is,

(1 − ζ )
d

dζ
P

m+ 1
2 ,m− 1

2
n =

(
m + 1

2

)
P

m+ 1
2 ,m− 1

2
n

−
(

n+ m + 1

2

)
P

m− 1
2 ,m+ 1

2
n , (D4)

−(1 + ζ )
d

dζ
P

m− 1
2 ,m+ 1

2
n =

(
m + 1

2

)
P

m− 1
2 ,m+ 1

2
n

−
(

n+ m + 1

2

)
P

m+ 1
2 ,m− 1

2
n , (D5)

where m � 1/2. These identities can be explicitly verified, for
example, by the use of the integral counterpart of Eq. (C1).

The final part of the proof of Eq. (53) lies in the comparison
of Eqs. (D2), (D3) and (D4), (D5). For m � 1/2, one can safely
take off the operation of absolute value to the superscripts of
Jacobi’s polynomial in Eq. (50), yielding

βmσ [ζ ] = βnmσ [ζ ] = cnmσP
m+ σ

2 ,m− σ
2

n [ζ ]. (D6)

Then, by simply comparing Eqs. (D2) with (D4) and (D5),
and recalling λ = ±(n + m + 1/2), one can verify |cnm+| =
|cnm−| with a relative sign of

cnm− = −sign[λ]cnm+. (D7)

For m � −1/2, notice that∣∣∣m − σ

2

∣∣∣ = |m| + σ

2
, (D8)

that is, for such m, Eq. (50) becomes

βmσ [ζ ] = βnmσ [ζ ] = cnmσ P
|m|+ σ

2 ,|m|− σ
2

n [ζ ]. (D9)

This allows for the use of Eqs. (D4) and (D5) with m replaced
by |m| in Eqs. (D3). Taking note of λ = ±(n + |m| + 1/2), one
can again verify |cnm+| = |cnm−|, but this time with a relative
sign of opposite value,

cnm− = sign[λ]cnm+. (D10)

The relations (D7) and (D10), respectively, for the two possible
regimes of m complete the proof of Eq. (53).
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