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Spin Berry phase in the Fermi-arc states

Ken-Ichiro Imura1,2 and Yositake Takane1

1Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Received 14 September 2011; published 12 December 2011)

An unusual electronic property of a Weyl semimetallic nanowire is revealed. Its band dispersion exhibits
multiple subbands of partially flat dispersion, originating from the Fermi-arc states. Remarkably, the lowest
energy flat subbands bear a finite size energy gap, implying that electrons in the Fermi-arc surface states are
susceptible to the spin Berry phase. This is shown to be a consequence of spin-to-surface locking in the surface
electronic states. We verify this behavior and the existence of the spin Berry phase in the low-energy effective
theory of Fermi-arc surface states on a cylindrical nanowire by deriving the latter from a bulk Weyl Hamiltonian.
We point out that in any surface state exhibiting a spin Berry phase π , a zero-energy bound state is formed along
a magnetic flux tube of strength �0/2 = hc/(2e). This effect is highlighted in a surfaceless bulk system pierced
by a dislocation line, which shows a 1D chiral mode along the dislocation line.
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I. INTRODUCTION

It has been proposed recently that a three-dimensional
(3D) Weyl semimetal phase is likely realized in pyrochlore
iridates, A2Ir2O7 (A = Y or a lanthanide element).1 The
Weyl semimetal has a unique band structure characterized
by a set of discrete linearly dispersive point nodes, the
Weyl points.2–4 Such a band structure of the Weyl semimetal
is naturally reminiscent of that of graphene, its 2D coun-
terpart, but unlike 2D Dirac cones as follows: 2D Dirac
cones have band structure H2D = pxσx + pyσy , whereas 3D
Weyl points have band structure H3D = pxσx + pyσy + pzσz.
Three-dimensional Weyl points are more stable objects; they
cannot be trivially gapped out by a perturbation (cf. H2D is
gapped by a local mass term, H ′ = mσz).

Moreover, unlike topological insulators, the Weyl
semimetal is gapless in the bulk, but, when in contact with
the vacuum, it exhibits a peculiar surface state, somewhat
reminiscent of a more established helical surface state of the
topological insulator. The two surface states are indeed both of
topological origin, and, in this sense, this analogy between the
Weyl semimetal and the topological insulator is not superficial
at all. In the bulk (without a surface) the Weyl semimetal
is already gapless, but the conduction and the valence bands
touch only at discrete points (Weyl points) in the Brillouin
zone; let us assume hereafter that there exists only a pair of
such point nodes for simplicity. In the presence of a surface,
an additional state appears, localized on the surface, and
“enveloping” the two point nodes. If one considers the E = 0
cross section of the energy spectrum, this additional surface
state appears as a line, not necessarily straight but always
connecting the two Weyl points, and forms a Fermi arc.1,2,5–8

As is typically the case with the helical Dirac cone surface
state of a topological insulator, the existence of this Fermi-arc
envelope state is topologically protected by a bulk topological
invariant through the so-called bulk/surface correspondence.

As we mentioned earlier, the Weyl semimetal can be
regarded as a 3D version of graphene. Such an analogy in
the low-energy electronic property of the bulk is naturally
extended to that of the surface. The Fermi-arc state is indeed
shown to be a precise 3D analog of the edge states of a

graphene nanoribbon in the zigzag edge geometry.9 These two
examples constitute prototypical classes of the topologically
nontrivial gapless states, which are counterparts of the gapped
topological insulator and superconductors, the latter known to
be classified into the form of a periodic table (tenfold) in terms
of their symmetry and dimension.10–12

The idea of characterizing topologically nontrivial gapless
or nodal states in terms of the topological invariants has been
introduced and extensively used in the study of 3He-A.3,13–15

More recently, it has been applied to the description of topo-
logically nontrivial nodal superconductors.16–22 A periodic
table analogous to the one used for classifying various classes
of topological insulators and superconductors has been also
proposed for those classes of topologically nontrivial gapless
states.23

The edge/surface state of a topological insulator is often
referred to be “helical,” indicating that its spin direction is
locked with respect to its propagating direction. Here, in
this work we focus on still another unique property of such
a helical surface state, i.e., the existence of the spin Berry
phase. The electronic spin in the surface helical state shows
“spin-to-surface locking,”24–29 i.e., the spin is locked in plane
to the tangential surface of the real space geometry (e.g., on a
cylindrical surface). A mathematical description of this spin-
to-surface locking, the spin Berry phase, primarily manifests
in the finite-size energy gap associated with the surface
helical states.29 In an infinitely large (or doubly periodic) slab
geometry, the finite-size energy gap of the surface state due to a
finite thickness of the slab decays exponentially as a function of
the thickness. In the case of a rectangular/cylindrical nanowire,
i.e., when the width of the slab becomes finite, and the slab
acquires side surfaces, this is no longer the case. The phase
information of the electronic wave function on one surface can
be transmitted to that of the opposite surface via the (gapless)
side surface states. The finite-size energy gap then decays
only algebraically as a function of the thickness. The spin
Berry phase replaces the periodic boundary condition applied
to the electronic motion around the cylinder by an antiperiodic
boundary condition, leading to half-integer quantization of
the orbital angular momentum around the cylinder.29 Such
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FIG. 1. (Color online) Multiple subbands, originating from a pair
of Fermi-arc states connecting the two Weyl points (kz = ±k0 =
±π/2) via the Brillouin zone boundary. The subbands have a flat band
dispersion, filling the bulk energy gap at kz > k0. A = B = tz = 1.
The simulation is done for a system of square lattice of size,
(Nx,Ny) = (24,24), periodic in the z direction. The inset shows
details of the spectrum around kz = k0 and E = 0.

an energy-gap due to phase coherent motion of an electron
around the (cylindrical) surface is sensitive to introduction
of a π -flux tube piercing the nanowire. The sensitivity to
π flux is a fingerprint of the existence of a spin Berry
phase, which might be directly triggered experimentally in
an Aharonov-Bohm-type measurement recently performed in
a system of topological insulator nanowires.30

As mentioned earlier, the Fermi-arc states resemble the
edge states of a zigzag graphene nanoribbon from the view-
point of topological classification. But still, as we demonstrate
in this paper, the Fermi-arc states exhibit, unlike a 2D
graphene layer, a specific spin Berry phase. In this regard
the Fermi-arc states show a stronger resemblance to the
helical surface states of a 3D topological insulator. This paper
reveals smoking-gun features of such a spin Berry phase in
the Fermi-arc states. We, first, demonstrate in Sec. II that
in a nanowire geometry electrons in the Fermi-arc surface
states show multiple subbands of a partially flat dispersion
(see Fig. 1), but they are susceptible to a finite-size energy
gap associated with the spin Berry phase. We then confirm in
Sec. III the existence of this spin Berry phase in the surface
effective Hamiltonian by deriving it from the bulk effective
Hamiltonian. In Secs. IV and V we analyze the system’s
response to an Aharonov-Bohm flux as well as to introduction
of a screw dislocation, confirming the existence of a spin Berry
phase. We set h̄ = 1, unless otherwise noted.

II. MULTIPLE FLAT SUBBANDS

Let us consider a simple model of a Weyl semimetal with a
single pair of Weyl nodes on the kz axis as follows:7,8

H = A(kxσx + kyσy) + M(k)σz, (1)

where k = (kx,ky,kz),

M(k) = �(kz) + B
(
k2
x + k2

y

)
, (2)

and we choose

�(kz) = 2tz(cos kz − cos k0). (3)

This is a long-wavelength effective Hamiltonian regarding the
motion in the x and y directions, whereas, in the z direction, it
can be regarded as a tight-binding Hamiltonian. Or, by making
the replacements:

kx → sin kx,

ky → sin ky,
(4)

k2
x → 2(1 − cos kx),

k2
y → 2(1 − cos ky),

the same model can be viewed as a 3D square-lattice tight-
binding model. We will employ this square-lattice implemen-
tation for numerical simulations.

The energy spectrum of this effective Weyl model is
characterized by a pair of Weyl points at k = (0,0, ± k0),
exhibiting a conic dispersion around them. In addition, a pair
of Fermi-arc states appear1,2,5–8 when we put this system into a
slab, say, bounded by two surfaces, one at x = 0 and the other
as x = Lx , parallel to the z axis. Let us fix the parameters such
that tz > 0, B > 0. Then, for −k0 < kz < k0, �(kz) > 0, i.e.,
�(kz)/B > 0. This means that a cross section of Eq. (1) at a
fixed kz in the above range describes a trivial 2D band insulator.
Whereas for k0 < kz < π and −π < kz < −k0, �(kz) < 0,
i.e., �(kz)/B < 0. Then, a similar cross section of Eq. (1) at
kz in one of these ranges describes a topological (quantized
anomalous Hall) insulator with a chiral edge mode. There
appears one single chiral branch on the x = 0 side and another
on the x = Lx side, propagating in opposite directions; − ŷ and
+ ŷ, respectively. These chiral modes show a linear dispersion,
therefore, of opposite sign and cross at ky = 0 and at E = 0,
forming an X-shaped dispersion, E = E(ky). If one allows
kz to vary continuously, then the locus of such an X-shaped
dispersion forms two planar membranes in the (ky,kz,E) space,
always crossing at ky = 0 (on the kz axis) and at E = 0. The
locus of the crossing point is the Fermi arc, connecting the two
Weyl points kz = k0 and kz = −k0 via the zone boundary. Both
ends of the two planar membranes are closed by half-conic
structures which appear “beyond” the Weyl points, kz < k0

and −k0 < kz. The entire manifold thus formed envelops the
two Weyl cone regions.

Let us then further restrict the system into a nanowire
geometry; the system is restricted not only between x = 0
and x = Lx but also between y = 0 and y = Ly . The energy
spectrum E = E(kz) of such a Weyl semimetallic nanowire is
shown in Fig. 1. The spectrum shows a series of flat subbands
as follows:

E(kz) = E±1,E±2,E±3, . . . , (5)

which are remnants of the two planar regions of the Fermi-arc
manifold. The flatness of the subbands stems from the fact
that the membrane state has no dispersion in the kz direction.
These multiple subbands form circular chiral modes, carrying
a spontaneous persistent current around the surface of the
wire. Note that such circular chiral modes do not appear
if one considers a wire perpendicular to the z axis. In that
case Fermi-arc type surface states do appear on the surface
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FIG. 2. (Color online) Behavior of multiple flat subbands in the presence of a flux tube � = �0/2 = hc/(2e) [�0 = hc/e] penetrating the
nanowire. (Left) The total flux tube � = �0/2 pierces a single plaquette at each layer. (Right) The flux tube is split into two, each carrying
�/2 = �0/4 in order to avoid a zero-energy state bound to the flux tube. Nx = Ny = 24.

parallel to the z axis, but they disappear on the side normal
to the z axis. Therefore, the surface states cannot completely
wrap the wire. This is in marked contras to the topological
insulator surface states. The latter, protected by the “strong”
bulk/edge correspondence, appear irrespectively of the shape
and direction of the surface and, consequently, cover the entire
surface. Here, the Fermi-arc subbands are indeed in one-to-one
correspondence with the structure of Weyl points in the bulk
spectrum. This correspondence is, however, “weak” in the
sense that it depends on the direction of the surface. As
we mentioned earlier, both the existence and flatness of the
Fermi-arc subbands are also topologically protected.

What might be counterintuitive in Fig. 1 is that the lowest
conduction and the highest valence subbands, E±1(kz), are still
separated by a finite-size energy gap (see its inset). We see later
(Fig. 2, upper panel) that one can actually close this gap by
introducing a flux π penetrating the cylinder. In the light of
our knowledge on the helical surface states of a 3D topological
insulator,24–29 such a behavior may be naturally attributed to
the existence of a spin Berry phase.

Let us come back to Fig. 1 and look into the subband spectra.
On the kz < k0 side, the behavior of E(kz) directly results
from the bulk spectrum. Indeed, for �(kz)/B > 0, only bulk
solutions are possible. The “bulk” solutions are the solutions
of Eqs. (1), (2), and (3) satisfying the following boundary
condition:

ψ(0,y) = ψ(Lx,y) = ψ(x,0) = ψ(x,Ly) =
[

0
0

]
. (6)

The “plane-wave” solutions of Eqs. (1), (2), and (3) are

|k±〉plane = ei(kxx+kyy)|kz〉|d(k)±〉, (7)

where k = (kx,ky,kz) and |kz〉 is a Bloch state with a crystal
momentum kz in the z direction. |d(k)±〉 represents a spin state
pointing in the direction of d(k) = [Akx,Aky,M(k)], either
parallel or antiparallel, depending on the index ±. The plane-
wave solution [Eq. (7)] has an energy eigenvalue,

E(k) = ±
√

A2
(
k2
x + k2

y

) + M(k)2. (8)

For large-enough �(kz) such that only the third component of
d(k) dominates, i.e., d(k) ‖ ẑ, and one can satisfy the boundary
condition Eq. (6) by a simple superposition of |k±〉 with k =
(±kx, ± ky,kz), i.e.,

|k±〉bulk � sin(kxx) sin(kyy)|kz〉| ẑ±〉, (9)

where k = (nxπ/Lx,nyπ/Ly,kz) with nx,ny = 1,2, . . .. Low-
est bulk subbands correspond to (nx,ny) = (1,1), (nx,ny) =
(1,2) and (2,1), (nx,ny) = (2,2), (nx,ny) = (1,3) and (3,1),
and so on. In the crossover regime kz ∼ k0, this simple picture
is no longer valid, but the subbands may be still classified by
these quantum numbers.

On the kz > k0 side, the Fermi-arc subbands (5) appear in
addition to these bulk solutions. The lowest-energy subband
solutions in the bulk merge into the Fermi-arc (surface)
subbands in the crossover regime. The Fermi-arc subband
solutions are solutions of Eqs. (1), (2), and (3) with (6) with
kx and ky being a complex number. Their wave functions are
localized on the surface of the wire. Last but not the least, the
Fermi-arc subbands (5) show a flat spectrum, which appear
below the bulk solutions, |E| < |�(kz)|, and exist only in the
regime: �(kz)/B < 0.

In the next section, we investigate the nature of such
surface Fermi-arc solutions. We derive a low-energy effective
Hamiltonian which involves only the surface states. It will
become clear that the Fermi-arc solutions indeed emerge from
the bulk effective Hamiltonian, Eqs. (1), (2), and (3), but,
importantly, with the spin Berry phase, which explains the
finite-size energy gap which we have seen in Fig. 1.

III. DERIVATION OF THE SPIN BERRY PHASE—THE
SURFACE EFFECTIVE HAMILTONIAN

To clarify the nature of the spin Berry phase, we consider
here a cylindrical nanowire of radius R extended along the
z axis: x2 + y2 � R. We start from the same bulk effective
Hamiltonian, Eqs. (1), (2), and (3), but, in order to extract
relevant information on the surface electronic states, we divide
it into two components,29,31–35 H = H⊥ + H‖, where H⊥ (H‖)
describes electronic motion perpendicular (tangential) to the
cylindrical surface. Equations (1), (2), and (3) represent an
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effective theory for kx,ky 	 1, but there is no restriction on
kz. Here we consider the case kz > k0 such that �(kz)/B < 0
and expand it as kz = k(0)

z + pz. Introducing

kr = −i
∂

∂r
, kφ = −i

1

r

∂

∂φ
, (10)

conjugate to the cylindrical coordinates r =
√

x2 + y2, φ =
arctan y

x
, one can express H⊥ and H‖ as

H⊥ = H⊥(kr ) = H |
kφ=0,kz=k

(0)
z

,
(11)

H‖ = H‖(kφ,pz).

In order to derive the surface effective Hamiltonian, we,
first, have to construct a base solution, the Fermi-arc solution
in the present case, satisfying the given boundary condition

|ψ(r = R,φ,z)〉 =
[

0
0

]
. (12)

Such a base solution is found by solving the electron dynamics
perpendicular to the surface,

H⊥|ψ⊥〉 = E⊥|ψ⊥〉, (13)

where H⊥ reads explicitly

H⊥ =
[

M⊥ Akre
−iφ

Akre
iφ −M⊥

]
. (14)

Here we have decomposed the mass term into

M⊥ � �
(
k(0)
z

) + Bk2
r ,

(15)
M‖ = Bk2

φ − 2tz sin k(0)
z pz.

The Laplacian in the cylindrical coordinates has another
contribution, (1/r)∂/∂r . Here, we neglect this first-order
derivative term, keeping only the term ∂2/∂r2.29 This is
justified when the radius R of the cylinder is sufficiently larger
than the penetration depth [κ−1, see Eq. (16)] of the surface
state.

We search for solutions of Eq. (13), which has an energy E⊥,
in the range −�(kz) < E⊥ < �(kz) and takes the following
form:

|ψ⊥〉 � eκ(r−R)|E⊥,κ〉, (16)

where

|E⊥,κ〉 =
[

E⊥ + M⊥(κ)
−iκAeiφ

]
(17)

and κ > 0. For a given energy E⊥, κ has two positive solutions,
κ = κ±, satisfying

E2
⊥ = M⊥(κ)2 − A2κ2,

(18)
M⊥(κ) = � − Bκ2.

Composing a linear combination of these two base solutions,
one can construct a hypothetical wave function,

|ψ⊥〉 = c1e
κ+(r−R)|E⊥,κ+〉 + c2e

κ−(r−R)|E⊥,κ−〉, (19)

which should be matched with the boundary condition (12),
i.e.,

det

[
E⊥ + M⊥(κ+) E⊥ + M⊥(κ−)

−iκ+Aeiφ −iκ−Aeiφ

]
= 0. (20)

Note that the two wave functions |ψ〉 and |ψ⊥〉 are related
by |ψ〉 = ψ‖(φ,z)|ψ⊥〉. Since κ+ 
= κ−, the condition (20)
simplifies (after some algebra) to

E⊥(� + E⊥) = 0. (21)

Recall that at fixed kz the Fermi-arc solution appears in the bulk
gap: −�(kz) < E⊥ < �(kz), i.e., Eq. (21) imposes E⊥ = 0.
Substituting this back to Eq. (18), one finds M⊥ = ±κA. For
E⊥ = 0 and M⊥ = κA, Eq. (17) becomes

|E⊥ = 0,κ〉 = M⊥

[
1

−ieiφ

]
, (22)

and the two solutions for κ become

κ± = A ± √
A2 + 4B�

2B
, (23)

which is consistent with the condition κ± > 0 (recall that
B� < 0). The other choice, M⊥ = −κA, is not compatible
with this requirement.

Thus, the normalized Fermi-arc base solution is found to
be

|ψ⊥〉 = ρ(r)(eκ+(r−R) − eκ−(r−R))

[
1

−ieiφ

]
, (24)

where

ρ(r) �
√

κ+κ−(κ+ + κ−)

2πR

eκ+(r−R) − eκ−(r−R)

|κ+ − κ−| (25)

(κ±R � 1 assumed). Equation (24) is a remarkable result,
indicating that the surface spin state is

|φ̂−〉 = 1√
2

[
e−iφ/2

−ieiφ/2

]
, (26)

diagonalizing a spin operator in the direction of φ̂ with an
eigenvalue −h̄/2, where φ̂ is a unit vector pointing to the
azimuthal direction,

φ̂ =
[− sin φ

cos φ

]
. (27)

The electronic spin in the Fermi-arc state is locked in the
direction (anti-) parallel to that of φ̂, and when an electron
goes around the cylinder in the anticlockwise direction, it also
rotates, following the curved surface of the cylinder, locked in
the direction of −φ̂. After a complete 2π rotation, the electron
goes back to the original position on the cylinder, the spin also
comes back its original state but with an additional phase of π .
This may not be clear from Eq. (24), since it is written in the
single-valued representation.29 Yet, information on the double-
valuedness of spin is safely encoded in the surface effective
Hamiltonian in the form of a spin Berry phase, as we see below.
Notice also that here, in contrast to the case of helical surface
states of a topological insulator,36,37 the surface spin state is
not helical. It is, rather, “chiral,” pointing to the azimuthal
direction of the cylinder independently of the value of kz.
The spin direction is locked, indeed, antiparallel to the group
velocity of the surface mode. Let us, finally, see such chiral
spin-to-surface locking leads, indeed, to the appearance of a
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spin Berry phase. Using the base solution (24), we calculate
the expectation value of

H‖ =
[

M‖ −iAe−iφkφ

−iAeiφkφ −M‖

]
(28)

to find

Hsurf = 〈ψ⊥|H‖|ψ⊥〉 = A

R

(
−i

∂

∂φ
+ 1

2

)
. (29)

The low-energy electron dynamics along the surface is, thus,
determined by the eigenvalue equation

Hsurfψ‖(φ,z) = E‖ψ‖(φ,z), (30)

where ψ‖(φ,z) = eikφφeikzz. The periodic boundary condition
around the wire,

ψ‖(φ + 2π,z) = ψ‖(φ,z), (31)

requires that kφ be an integer. The spin Berry phase term, i.e.,
factor 1/2 in Eq. (29), plays, then, the role of shifting the
surface electron spectrum by a half of the finite-size energy
gap,

Esurf = A

R

(
kφ + 1

2

)
. (32)

Recall that the origin of this 1/2-spin Berry phase term is
that the spin in the Fermi-arc surface state is locked in the direc-
tion of Eq. (26). This is in marked contrast to the spin state of
the bulk solution; see Eqs. (7) and (9). In the crossover regime
kz ∼ k0, the bulk spin state |d±〉 on the kz < k0 side evolves
into the locked surface spin state, Eq. (26). In parallel with this
evolution in spin space, the wave function of lowest energy
bulk subbands tend to become localized around the boundary.
In spectrum, they merge into the Fermi-arc (surface) subbands.

IV. NUMERICAL CONFIRMATION OF
THE SPIN BERRY PHASE

Let us verify the existence of a spin Berry phase in
numerical experiments. We reconsider the nanowire geometry
with a square cross section, which has already appeared in Sec.
II. Here, to confirm the existence of the spin Berry phase, we
introduce a flux tube � piercing the nanowire. In Fig. 2 the
energy spectrum in the presence of an infinitely thin π -flux
tube, carrying a magnetic flux � = �0/2 = hc/(2e), with
�0 = hc/e being the unit flux quantum, is shown for compari-
son with the spectrum in the absence of flux (Fig. 1). The upper
panel of Fig. 2 shows the spectrum when the total flux �0/2 =
hc/(2e) pierces, at each cross section, a single plaquette. The
obtained spectrum shows a gapless dispersion with doubly
degenerate zero-energy states. This behavior is, indeed, in
marked contrast to the gapped spectrum of Fig. 1, which is
reminiscent of an analogous behavior due to the effect of the
spin Berry phase on the surface of a topological insulator.28

Still, it is not simply explained by the effective surface theory,
Eqs. (29), (30), (31), and (32), which we derived in the last sec-
tion. Notice that in the presence of a flux �0/2 penetrating the
cylinder, the surface effective Hamiltonian (29) is replaced by

Hsurf = A

R

(
−i

∂

∂φ
+ 1

2
− �

�0

)
, (33)

resulting in a shift of the spectrum

Esurf(�) = A

R

(
kφ + 1

2
− �

�0

)
. (34)

Thus, according to the effective surface electron dynamics,
Eqs. (33), (30), (31) and (34), the subband spectra are
uniformly shifted both for kφ positive and negative (or null)
integer.

Where, then, does the degenerate E = 0 pair come from?
The answer to this question is almost obvious if one looks into
spatial distribution of the corresponding wave function. As a
general consequence of the 1/2-spin Berry phase term, a series
of plaquettes (aligned in the z direction), each penetrated by
a π -flux tube, always hosts a zero-energy bound state. (A
possibly related effect in a strong topological insulator can
be found in Ref. 38). The existence of such a bound state
might be clear from Eq. (34). As a crude approximation, one
can regard the series of plaquettes which accommodates the
π flux as a cylinder of a radius r0 ∼ 1 (the lattice constant).
Taking into account (though this is irrelevant to the discussion
here) that the surface state localized around this cylinder
will have an opposite chirality (propagating direction), the
effective surface Hamiltonian [Eq. (29)] may be modified to
describe such a bound state as

Hbound = −A

r0

(
−i

∂

∂φ
+ 1

2
− �

�0

)
. (35)

In Eqs. (33) and (35) the electrons feel the same flux, only
the propagating direction is opposite. We may write the
corresponding wave function as ψ‖(φ,z) = einφeikzz, with a
quantum number n associated with the orbital motion around
the flux tube rather than kφ to make a distinction between the
two. Equation (34) then becomes,

Ebound(�) = −A

r0

(
n + 1

2
− �

�0

)
. (36)

In any case, cancellation of the 1/2-spin Berry phase term by
the π flux implies the existence of a zero-energy bound state.
Of course, since r0 ∼ 1 	 R, in the spectrum of Eq. (36)
only the E = 0 (n = 0) state is relevant in the energy scale,
A/R, of the finite-size energy gap, cf. Eq. (34), and appears
in the window of bulk energy gap. Such a bound state along
the flux tube is degenerate with the E = 0 subband state of
Eq. (32) with kφ = 0 and explains the twofold degeneracy of
the E = 0 state in Fig. 2.

However, if one’s purpose is to see simply the effects of the
spin Berry phase, one can avoid this complexity. The lower
panel of Fig. 2 shows a spectrum when the system is always
pierced by a π -flux tube, with a magnetic flux � = �0/2 =
hc/(2e), but split into two; each of the half flux �/2 = �0/4 =
hc/(4e) pierces a different plaquette. One can still assume a
bound state along such a half flux tube and estimate its energy.
For a cylinder penetrated by a half flux tube, Eq. (36) modifies
to

Ebound(�) → Ebound(�/2) = −A

r0

(
n + 1

2
− �/2

�0

)
. (37)

Clearly, for � = �0/2 and r0 ∼ 1 	 R, there exists no bound
state in the scale of finite-size energy gap A/R. The n =
0 bound state is sent to the high-energy spectrum (one can
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FIG. 3. (Color online) Multiple subbands deformed by a crystal dislocation with a Burgers vector b = (0,0,b), where (upper left) b = 1,
(upper right) b = 2, and (bottom) b = 4. k0 = π/3, Nx = Ny = 16.

actually see this in the lower panel of Fig. 2). Thus, the low-
energy (at the energy scale of A/R) spectrum of such a system
is simply determined by Eq. (34). The obtained data depicted
in the lower panel of Fig. 2 shows behavior consistent with Eq.
(34), with a single subband state located precisely at E = 0
(see the inset).

An alternative way to verify the existence of the spin Berry
phase is to see the system’s response to crystal deformation: the
introduction of a screw dislocation. A screw dislocation plays,
fundamentally, a role similar to the magnetic flux we have
considered above,28,39 but its effect on the subband spectrum
superficially differs much more, as shown in Fig. 3. Suppose
that the underlying crystal is deformed by a screw dislocation
along the axis of the wire (z axis); its Burgers vector is
b = (0,0,b) (b = ±1, ± 2, . . .). As opposed to a magnetic
flux which twists the phase of an electronic wave function
uniformly, a crystal dislocation introduces a phase shift which
depends on the crystal momentum kz, in the direction of the
Burgers vector,

ψ‖(φ,z) = ei[kφ−kzb/(2π)]φeikzz, (38)

introducing a finite slope into the subband spectrum,

Esurf(kzb) = A

R

(
kφ + 1

2
− kzb

2π

)
. (39)

Notice that the kφ-th subband intersects with the E = 0 line at

kzb = (2kφ + 1)π, (40)

similarly to the π -flux case, but this here occurs only at such
discrete values of kz.

Is that all that a dislocation line does to the subband
spectrum? No, of course not. In each panel of Fig. 3 one
can recognize an isolated mode which has a slope opposite
to all the other subband states. This is again due to a bound
state formed along a dislocation line. Similarly to the case of
a π -flux tube piercing a single plaquette at each (x,y) layer,
a series of plaquettes penetrated by the dislocation line may
be regarded as a cylinder of radius r0 ∼ 1. The spectrum of
subband states associated with such a dislocation line reads

Ebound(kzb) = −A

r0

(
n + 1

2
− kzb

2π

)
. (41)

Again, for r0 ∼ 1 only at most a few subbands, satisfying a
zero-energy condition,

kzb = (2n + 1)π, (42)

are visible in the relatively small window of the bulk spectrum.
Such subbands have a steep positive slope as a function of kz,
opposite to all the other subbands described by Eq. (39) since
R � 1; i.e., the bound state(s) along the dislocation line is
(are) propagating modes. Notice that in the two upper panels
of Fig. 3 (cases of b = 1,2), crossing of the two subbands,
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Eqs. (39) and (41), occurs at kφ = n = 0, whereas in the
bottom panel (b = 4 case), the same crossing which falls on the
Fermi-arc region is at kφ = n = 1, indicating that kz = (3/4)π .

We have seen that a (square cross sectional) cylinder pierced
by a dislocation line should be regarded as a pair of concentric
cylinders with radii r0 ∼ 1 and R � 1. This allows us to
interpret the spectra shown in Fig. 3 as a superposition of two
contributions; one from the subbands localized in the vicinity
of the outer surface, Eq. (39), and the other from a bound state
along a dislocation line, Eq. (41). To double check the validity
of such an interpretation in terms of the bound state along a
dislocation line, we consider in the next section an extreme
example in which only the bound states appear.

V. PROTECTED 1D CHIRAL MODE ALONG A
DISLOCATION LINE

Let us, finally, consider a slightly different geometry in
which a pair of screw dislocations, one parallel and the
other antiparallel with the z axis, penetrates a triply periodic
(surfaceless) system; the two dislocation lines are spatially
well separated. On a planar region bounded by the two
dislocation lines the crystal is dislocated in the z direction
by b. This attributes to each dislocation line a pair of Burgers
vectors, b = (0,0,b) and b = (0,0,−b). As we have already
seen, such a situation is readily described by the cylinder model
we have considered in Sec. IV. A minor but not unimportant
difference from the previous case is that here the two cylinders

are parallel and not concentric. Therefore, on the surface of
the two cylinders the orbital motion of an electron around the
cylinder is in the same anticlockwise direction. The low-energy
electron dynamics on the surface of the two cylinders are
described by the same surface effective Hamiltonian (29).
Only the Burgers vector differs and modulates the phase of
the electronic wave function in different ways; along each of
the dislocation line, Eq. (38) should be replaced by

ψ1(φ,z) = ei(n1−kzb/(2π))φeikzz, (43)

ψ2(φ,z) = ei(n2+kzb/(2π))φeikzz. (44)

The corresponding bound state spectra read

E1(kzb) = A

r0

(
n1 + 1

2
− kzb

2π

)
, (45)

E2(kzb) = A

r0

(
n2 + 1

2
+ kzb

2π

)
. (46)

Again, since r0 ∼ 1 only the lowest energy subbands, satisfy-
ing the zero-energy condition,

kzb = (2n1 + 1)π, − kzb = (2n2 + 1)π, (47)

are relevant in the spectrum. Some concrete examples of
calculated spectra for such a system are shown in Fig. 4
for b = 1 (top), b = 2 (central), and b = 4 (bottom). Each
spectrum exhibits a pair of chiral modes, which are identified
as the states represented by Eqs. (43) and (44) with n1 and n2

satisfying Eqs. (47) in the Fermi-arc region: k0 < kz < π . For
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FIG. 4. (Color online) One-dimensional chiral modes along a pair of dislocation lines; b = 1 (upper left), b = 2 (upper right), and b = 4
(bottom). k0 = π/3, Nx = Ny = 24.
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the two upper panels (cases of b = 1,2), n1 = 0, n2 = −1,
i.e., the two chiral modes intersect at kz = π/b and at E = 0.
As for the last panel (b = 4), n1 = 1, n2 = −2, indicating that
the intersection occurs at kz = (3/4)π . Note that this type of
gap closing always occurs at E = 0 and at the same kz points
uniquely determined by the Burgers vector. Such a feature
is model independent and, in this sense, these chiral modes
are protected. Notice, in contrast, that projection of the 3D
Weyl point onto the 1D Brillouin zone (kz = π/3 in Fig. 4) is
gapped by the screw dislocation.

It is also interesting that such a pair of zero-energy bound
states have a dispersion in the kz direction; they have a finite
group velocity of order ∼A and are propagating along the
dislocation line but in the opposite direction on each of the
dislocation lines. In this sense we call each of them a 1D chiral
mode. Note that here the meaning of “chiral” differs from when
we used the same word to describe the chiral property of the
Fermi-arc surface state or its subbands. Indeed, on each of the
dislocation lines the circular orbital motion of an electron in
the Fermi-arc state (around a hypothetical cylinder of radius
r0 ∼ 1) is in the same anticlockwise direction but follows a
spiral which evolves in the opposite direction (+z or −z),
reflecting the opposite direction of the Burgers vector.

VI. CONCLUSIONS

We have studied electronic states of a 3D Weyl semimetal,
which serve, in this regard, as the 3D counterparts of graphene.
Naturally, the corresponding Fermi-arc surface states could
be regarded as a 2D version of 1D edge modes with a flat
dispersion, which are known to exist in the zigzag edge
nanoribbon.

This paper, however, points out a crucial difference between
the two systems. The Fermi-arc surface states exhibit a specific
type of (chiral) spin-to-surface locking. This manifests as a
spin Berry phase when one considers a curved surface, e.g., a
cylindrical surface. In 1D edge states of the zigzag nanoribbon
the edge pseudospin state is determined rather by the structure
of the edge.40,41 The spin Berry phase has been regarded as a
hallmark property of the helical surface states of a topological
insulator. In this paper we have demonstrated that in the case of
3D Weyl semimetal, the existence of peculiar spin Berry phase
in the Fermi-arc state leads to a number of unusual finite-size
effects: (i) The nanowire spectrum shows a feature of multiple
subbands, which is gapped at E = 0 (at the level of Weyl
points), and (ii) in the case of triply periodic surfaceless system,
a protected gapless chiral mode appears along a dislocation line
and dominates the low-energy transport.

As a general remark, we have emphasized that whenever
a system bears a surface state involving a spin Berry phase,
a series of plaquettes pierced by a π -flux tube always hosts
a zero-energy bound state. The second statement above is a
specific version of this general phenomenon in the case of a
3D Weyl semimetal bearing Fermi-arc states.
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