44 research outputs found
Gestational Outcomes and Birth Weight in Japanese Women at the Upper and Lower limits of the Normal BMI range
To examine the outcome of gestational blood pressure and birth weight in women with normal pre-pregnancy BMI (18.5-25 kg/m2) who are at the lower and upper limits of this range, i.e., slightly underweight or slightly overweight. Overall, 2,038 Japanese women with low -risk who had delivered during January 2014–December 2016 were classified according to their pre-pregnancy BMI: underweight (< 18.5 kg/m2), slightly underweight (18.5≤BMI<21 kg/m2), normal (21≤BMI<23 kg/m2), slightly overweight (23≤BMI<25 kg/m2) and overweight (≤ 25 kg/m2). Their blood pressure during each trimester and birth weight was evaluated. The slightly overweight group showed a significantly higher blood pressure than the underweight and slightly underweight groups. Birth weight was lower in the slightly underweight than in the slightly overweight group (p<0.01). The incidence rate of “heavy for dates” (HFD) infants was significantly higher in the slightly overweight and overweight groups than in the other groups (p<0.05 and p<0.01, respectively). Weight gain of < 7 kg significantly increased the rate of “light for dates” (LFD) infants, while a weight gain of ≥13 kg significantly increased the rate of HFD infants (p<0.05 and p<0.01, respectively). Blood pressure during pregnancy was ssociated with pre-pregnancy BMI. The birth weight of infants of low-risk pregnant women is affected by both pre-pregnancy BMI and gestational weight gain
An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging
Tissue optical clearing permits detailed evaluation of organ three-dimensional (3-D) structure as well as that of individual cells by tissue staining and autofluorescence. In this study, we evaluated intestinal morphology, intestinal epithelial cells (IECs), and enteroendocrine cells, such as incretin-producing cells, in reporter mice by intestinal 3-D imaging. 3-D intestinal imaging of reporter mice using optical tissue clearing enabled us to evaluate both detailed intestinal morphologies and cell numbers, villus length and crypt depth in the same samples. In disease mouse model of lipopolysaccharide (LPS)-injected mice, the results of 3-D imaging using tissue optical clearing in this study was consistent with those of 2-D imaging in previous reports and could added the new data of intestinal morphology. In analysis of incretin-producing cells of reporter mice, we could elucidate the number, the percentage, and the localization of incretin-producing cells in intestine and the difference of those between L cells and K cells. Thus, we established a novel method of intestinal analysis using tissue optical clearing and 3-D imaging. 3-D evaluation of intestine enabled us to clarify not only detailed intestinal morphology but also the precise number and localization of IECs and incretin-producing cells in the same samples
チョウカン トランス ポーター オ ブンシ ヒョウテキ トシタ ジンシッカン チリョウホウ ノ カクリツ オ メザシテ
The understanding of intestinal function in chronic kidney disease(CKD)has been important elements in the clinical management of CKD with dietary and drug therapy. Numerous studies have indicated that CKD patients or model rats have enzymatic abnormalities and impairments of absorptive function in the small intestine. However, it has been still unclear how different of the intestinal function in CKD. In this study, we demonstrated the microarray analysis of global gene expression in intestine of adenine-induced CKD rat. DNA microarray analysis using Affymextrix rat gene chip revealed that CKD caused great changes in gene expression in the rat duodenum : about400genes exhibited more than a two-fold change in expression level. Gene ontology analysis showed that a global regulation of genes by CKD involved in iron ion binding, alcoholic, organic acid and lipid metabolism. Furthermore, we found markedly changes of a number of intestinal transporters gene expression. These results suggest that CKD may alter some nutrient metabolism in the small intestine by modifying the expression of specific genes. The intestinal transcriptome database of CKD might be useful to develop the novel drugs or functional foods targeting several intestinal genes including transporters for the management of CKD
Inhibitory Effects of Chlorella Extract on Airway Hyperresponsiveness and Airway Remodeling in a Murine Model of Asthma
Chlorella extract (CE) has been shown to induce production of T helper-1 cytokines, and regulate serum IgE levels in animal models of asthma. We aimed to evaluate whether CE could inhibit ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and airway remodeling in a murine model of asthma. Balb/c mice were allocated to four groups: a control group (no OVA exposure, not given CE), a CE group (no OVA exposure, given CE), an asthma group (sensitized/challenged with OVA, not given CE) and a CE+asthma group (sensitized/challenged with OVA, given CE). In the asthma and CE+asthma groups, mice were sensitized with OVA on day 0 and day 12, and then challenged with OVA on three consecutive days. In the CE and CE+asthma groups, the mice were given feed containing 2% CE. We assessed AHR to methacholine, and analyzed bronchoalveolar lavage fluid (BALF), serum, lung tissue and spleen cells. Administration of CE was associated with significantly lower AHR in OVA-sensitized and challenged mice. CE administration was also associated with marked reduction of total cells, eosinophils and T helper-2 cytokines (IL-4, IL-5 and IL-13) in BALF. In addition, administration of CE significantly decreased the numbers of periodic acid-Schiff (PAS)-positive cells in OVA-sensitized and challenged mice. Administration of CE also directly suppressed IL-4, IL-5 and IL-13 production in spleen cells of OVA-sensitized and challenged mice. These results indicate that CE can partly prevent AHR and airway remodeling in a murine model of asthma
Antigenic mimicry-mediated anti-prion effects induced by bacterial enzyme succinylarginine dihydrolase in mice.
Prions, the causative agents of prion diseases, are immunologically tolerated because their major component, prion protein (PrP), is a host-encoded molecule. Therefore, no effective prion vaccines have been developed. We previously showed that heterologous bovine and sheep PrP immunizations of mice overcame tolerance by an antigenic mimicry mechanism to efficiently induce anti-PrP auto-antibodies (Abs), significantly prolonging incubation times in mice subsequently infected with the mouse-adapted Fukuoka-1 prion. These results prompted us to investigate if non-mammal derived molecules able to antigenically mimic anti-prion epitopes, could act as prion vaccines. We show here that immunization of mice with recombinant succinylarginine dihydrolase, a bacterial enzyme with a peptide sequence similar to an anti-prion epitope, induced anti-PrP auto-Abs with anti-prion activity and significantly retarded survival times of the mice subsequently infected with Fukuoka-1 prions. These results might open a way for development of a new type of antigenic mimicry-based prion vaccine
Long-term follow-up of production of IgM and IgG antibodies against SARS-CoV-2 among patients with COVID-19
The patients diagnosed with coronavirus disease 2019 (COVID-19) produce IgM and IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the frequency and duration of antibody production still need to be fully understood. In the present study, we investigated the duration of antibody production after SARS-CoV-2 infection. The patients diagnosed with COVID-19 were monitored over twelve months for the production of SARS-CoV-2 IgM and IgG antibodies, and the characteristics of these patients were examined. Forty-five patients diagnosed with COVID-19 were enrolled, and thirty-four patients were followed up until they tested negative for SARS-CoV-2 IgM and IgG antibodies or up to twelve months after the date of a negative SARS-CoV-2 polymerase chain reaction (PCR) result. The positivity rates of SARS-CoV-2 IgM and IgG antibodies were 27.3% and 68.2% when SARS-CoV-2 PCR was negative, 20.6% and 70.6% after one month, 8.8% and 52.9% after three months, and 0.0% and 14.7% after six months, respectively. Moreover, we compared patients with milder conditions who did not require oxygen administration with those with severe conditions which required oxygen administration. The positivity rate of SARS-CoV-2 IgG antibodies was significantly higher in patients with severe conditions than in those with milder conditions on the date of a negative SARS-CoV-2 PCR result and after one month and three months, but not after six months. Patients with more severe COVID-19 produced more SARS-CoV-2 IgG antibodies. Moreover, it is suggested that the duration of IgG antibody production is independent of COVID-19 severity
鹿児島県における退院後生活環境相談員の業務の現状と課題 : 精神保健福祉士へのアンケート調査から明らかになったこと
The purpose of this study was to clarify the current status and issues of “social worker for living conditions after discharge” that was introduced in 2014 by the Ministry of Health, Labor and Welfare in Kagoshima. Of the 51 psychiatric hospitals in Kagoshima, the survey aimed at examining the viewpoints of social workers for living conditions after discharge in 38 hospitals regarding the living conditions of patients after being discharged. The social workers for living conditions after discharge were members of Kagoshima Association of Psychiatric Social Workers, which is a cooperative research organization.The results of the survey revealed that 58 social workers for living conditions after discharge (45.3%) experienced difficulty and / or conflict but had also experienced a sense of fulfillment and accomplishment. In addition, 28 categories were extracted from the data of 3 open-ended questions. The results thus revealed the problems related to completion of an inpatient care plan within the prescribed deadline; conflicts that the social workers experienced due to the living conditions after the patients have been discharged and the institution’s understanding regarding the same; varying degrees of recognition of varied occupations enjoyed at conferences; the condition of powerless people; the difficulties of coordinating chronic shortages, especially when the person and his/her family had different intentions; and high ratio of office work and insufficient direct support
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target