356 research outputs found

    Yoga for breast cancer survivors: psychological recovery and QOL

    Get PDF

    Sterol Metabolism and Transport in Atherosclerosis and Cancer

    Get PDF
    Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases

    Phosphatidylinositol 4-phosphate 5-kinase β regulates growth cone morphology and Semaphorin 3A-triggered growth cone collapse in mouse dorsal root ganglion neurons

    Get PDF
    Growth cone motility and morphology, which are critical for axon guidance, are controlled through intracellular events such as actin cytoskeletal reorganization and vesicular trafficking. The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] has been implicated in regulation of these cellular processes in a diverse range of cell types. The main kinases involved in the production of PI(4,5)P2 are the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family, which consist of three isozymes, α, β and γ. Here, we demonstrate the involvement of PIP5Kβ in growth cone dynamics. Overexpression of a lipid kinase-deficient mutant of PIP5Kβ (PIP5Kβ-KD) in mouse dorsal root ganglion (DRG) neurons stimulated axon elongation and increased growth cone size, whereas wild-type PIP5Kβ tended to show opposite effects. Furthermore, PIP5Kβ-KD inhibited growth cone collapse of DRG neurons induced by semaphorin 3A (Sema3A). These results provide evidence that PIP5Kβ negatively regulates axon elongation and growth cone size and is involved in the cellular signaling pathway for Sema3A-triggered repulsion in DRG neurons

    Synthesis of ordered mesoporous ruthenium by lyotropic liquid crystals and its electrochemical conversion to mesoporous ruthenium oxide with high surface area

    Get PDF
    In ordered to prepare high capacitance pseudo-capacitive oxides, it is important to design nanostructures with appreciable mesopores. Supramolecular templating has become a popular method to synthesize ordered mesoporous metals; however, the application of the same technique to synthesis of high surface area oxides is more demanding. We present here, the synthesis of ordered mesoporous ruthenium metal by lyotropic liquid crystal templating and its electrochemical conversion to ordered mesoporous ruthenium oxide by a simple, room temperature procedure. The bulk, unsupported metallic ordered mesoporous ruthenium exhibits high surface area of 110 m(2) g(-1), which is comparable to typical supported Ru nanoparticles. The oxide analogue gives a high specific capacitance of 376 Fg(-1), owing to the porous structure. These results demonstrate a possible facile and generic process to synthesize oxides with ordered nanostructures by utilization of the various phases that can be obtained with lyotropic liquid crystalline templates such as cubic, hexagonal, lamellar, etc.ArticleJOURNAL OF POWER SOURCES. 204:244-248 (2012)journal articl

    Limnotrachelobdella okae (Hirudinida, Piscicolidae) from Cherry Salmon Oncorhynchus masou masou in Neritic Deep Waters of the Western North Pacific Ocean

    Get PDF
    The piscicolid leech Limnotrachelobdella okae (Moore, 1924) was found attached to the skin near the pectoral fin of a cherry salmon Oncorhynchus masou masou caught at a depth of 180-200 m in the western North Pacific Ocean off the east coast of northern Honshu, Japan. This is the first record of L. okae from the ocean-swimming salmonid in neritic deep waters although it is not known where the fish was infected. L. okae has been generally believed to be a parasite of both marine and freshwater fishes, but it is concluded, based on the present results and the literature review on the host and distributional records, that the leech is a coastal marine or brackish-water species: the infection occurs only in salt waters, and anadromous fishes, such as salmonids, carry the leech to fresh waters, where it can survive for a certain period

    Development of a glue-free bimorph mirror for use in vacuum chambers

    Full text link
    PZT (lead zirconate titanate)-glued bimorph deformable mirrors are widely used in hard X-ray regimes; however, they have not yet been used in soft X-ray regimes because they are less compatible for usage under high vacuum. In this study, we developed a glue-free bimorph deformable mirror, in which silver nano-particles were employed to bond PZT actuators to mirror substrates. Under an appropriate bonding condition, the bonding layer was confirmed to be uniform and the mirror's bending characteristics were demonstrated to be sufficiently stable; its gas emission rate was also shown to be acceptable. Piezo responses before and after additional heating at 200 °C showed the thermal stability of its bonding and bending properties.Yoshio Ichii, Hiromi Okada, Hiroki Nakamori, Akihiko Ueda, Hiroyuki Yamaguchi, Satoshi Matsuyama, and Kazuto Yamauchi, "Development of a glue-free bimorph mirror for use in vacuum chambers", Review of Scientific Instruments 90, 021702 (2019), https://doi.org/10.1063/1.5066105

    Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA

    Get PDF
    Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention

    Facile Synthesis of Palladium-Nanoparticle-Embedded N-Doped Carbon Fibers for Electrochemical Sensing

    Get PDF
    2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. In recent years, there have been many studies on metal/carbon hybrid materials for electrochemical applications. However, reducing the metal content in catalysts is still a challenge. Here, a facile synthesis of palladium (Pd) nanoparticle-embedded N-doped carbon fibers (Pd/N-C) through electropolymerization and reduction methods is demonstrated. The as-prepared Pd/N-C contains only 1.5wt% Pd. Under optimal conditions, bisphenolA is detected by using amperometry in two dynamic ranges from 0.1 to 10μm and from 10 to 200μm, and the obtained correlation coefficients are close to 0.9836 and 0.9987, respectively. The detection limit (DL) for bisphenolA is determined to be 29.44 (±0.77)nm
    corecore