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Summary

We introduced human interferon-induced, double-stranded RNA-dependent
protein kinase (PKR) ¢cDNA into tobacco plants by means of the Agrobacterium-
mediated transformation. We were able to obtain one transgenic plant with an
integrated PKR gene. Although the R1 progeny of the transgenic plant did not
express a detectable level of the transgene, they showed low-level resistance to
tobacco mosaic and cucumber mosaic viruses. The mechanism of the multiple
virus resistance in the transgenic plants that had human PKR gene remains
unclear.

Interferons which are secreted by animal cells after virus infection induce the
synthesis of additional antiviral proteins, such as 2'-5" oligoadenylate synthetase
(2-5Aase) and double-stranded RNA-dependent protein kinase (PKR) (11).
These mammalian antiviral systems have not been found in plant cells. There-
fore, researchers have attempted to develop a mammalian antiviral system for
plants. Truve et al. found that transgenic potato plants with rat 2-5Aase are
protected from potato virus X infection under field conditions (13). We also
found that transgenic tobacco plants with human 2-5Aase exhibited multiple
virus resistance (2,9). In animal cells, 2-5Aase is activated by cellular double-
stranded RNA, such as replicative intermediates of RNA viruses, and the enzyme
polymerizes ATP to a series of 5-phosphorylated, 2’, 5’-linked oligoadenylates (2-
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5A). 2-5A activates a latent endoribonuclease L (RNase L) which degrades viral
and cellular single stranded RNAs. Since 2-5A-dependent RNase has not been
detected in tobacco cells, the antiviral activity that was observed in the plants
with 2-5Aase may be caused by a different mechanism from in animal cells.
Mitra et al. (6) and Ogawa et al. (10) found that the transgenic tobacco plants
expressing both 2-5Aase and RNase L showed high-level resistance to multiple
viruses.

Although the 2-5A system in transgenic plant cells has been studied, another
double-stranded RNA-dependent enzyme has not been studied to date. The
interferon-induced enzyme is autophosphorylated upon binding to double-
stranded RNA. Autophosphorylation of the PKR leads to phosphorylation of
the alfa subunit in eukaryotic initiation factor 2 (eIF2), subsequently resulting in
the inhibition of the translation initiation process (11). We generated the trans-
genic plants that harbored human PKR ¢DNA, and examined the antiviral state
of the transgenic plants in this paper.

Materials and Methods

Construction of the expression vector and the transformation of plants

Human PKR ¢cDNA was kindly provided by Dr. A.G. Hovanessian (5). The
PKR-coding region was ligated into plant expression vector pBE2113 (7). The
resulting plasmid, pBE2113-PK, was used to produce transgenic tobacco plants by
the Agrobacterium-mediated transformation, as described previously (8). Mouse
2-5Aase ¢cDNA (3), which was a gift from Dr. Y. Sokawa, was also used to trans-
form as a control.

Polymerase chain reaction of genomic DNA

Integration of the transgene was confirmed by polymerase chain reaction
(PCR) of genomic DNA, amplifying the neomycin phosphotransferase (NPT II)
gene and the PKR gene. Primary transformants with both NPT II and PKR
genes were self-pollinated, and the R1 progenies were selected on kanamycin
medium for further tests.

Northern analysis

Total RNA was isolated from the young leaves of the R1 progeny by the acid
guanidinium thiocyanate/phenol-chloroform method (1). Twenty ug of total
RNA was separated on a denaturating formaldehyde gel and was blotted onto
Hybond-N membrane (12). Northern blots were hybridized with the
digoxigenin-labeled PKR-coding region according to the supplier (Boehringer).
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Virus wnoculation onto plants

Kanamycin-resistant R1 seedlings were grown in a growth room at 26°C
(day)/22°C (night) under 20,000 lux illumination for a 16 h photo-period, and
were inoculated with a 1: 100 dilution of cucumber mosaic virus (CMV)-infected
tobacco sap on the sixth leaves at their full expansion stage. Symptoms were
recorded up to 21 days after inoculation. Tobacco mosaic virus (TMV)-resistance
tests were performed by inoculating excised the ninth leaves with 20 ng/ml
purified TMV. The inoculated leaves were incubated in a growth room at 23°C
under 3,000 lux illumination for a 16 h photo-period. After being incubated for
4 days, the number of local necrotic lesions that had formed on the leaves were
counted.

Results and Discussion

We obtained thirty-six primary transformants (RO) harboring NPT II genes.
The integrated PKR genes were confirmed in only one transformant (plant
number : PK1) (data not shown). Moreover, PK1 progeny did not show a
detectable level of transgene (Fig. 1). As for 2-5Aase, we obtained twenty-nine
RO plants with both NPT II and 2-5Aase genes were obtained. A Northern
analysis of the total RNA that was isolated from plant number ME116 showed
that the transgene transcripts were the size that we predicted (Fig. 1).

Twelve PK1 R1 plants were inoculated with CMV, which 1s the type member
of the Cucumovirus, and systemic symptom development was observed (Fig. 2).
Wild-type plants showed systemic mosaic symptoms within 10 days after inocula-
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Fic. 1. Northern blot analysis of transgenic tobacco plants.
Digoxigenin-labeled PKR and 2-5Aase cDNAs were combined and used as
probes.
Arrows indicate the predicted sizes of transgenes.
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Fic. 2. Systemic symptom development in PK1 tobacco plants after inoculation

with CMV.
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F1c. 3. Number of necrotic local lesions formed on excised PK1 tobacco leaves
moculated with TMV.

tion, while the delay of the development of symptoms was observed in most of the
PK1 plants. Next, the PK1 plants were inoculated with other virus that belon-
ged to a different taxonomic group, TMV, which is the type member of the
Tobamovirus. TMV formed local necrotic lesions on the PK1 plant leaves, but
the number was significantly less than on the wild-type plants leaves (Fig. 3).
Thus, the PK1 plants showed multiple resistance to CMV and TMV infections.

The only a transgenic plant was obtained by using a pBE2113-PK vector.
We are unsure whether the low level of efficiency of the transformation was due
to the basal transformation vector or to the PKR gene sequence. However, the
latter is more likely because transgenic plants with NPT II gene were obtained
with a high levels of efficiency.

In the PK1 plants, we did not detect transgene transcripts. This may have
been caused by incorrect integration of the T-DNA region, especially the promoter
region. We have also excluded the possibility that the integrated PKR gene was
‘co-suppressed’ by an endogenous plant PKR gene, because plant PKR (pPKR)



was only recently characterized in barley (4).
provide clear evidence that mammalian PKR (mPKR) confers viral resistance on
plants, PKR, as well as 2-5Aase genes, may become a genetic source for the
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development of virus-resistant plants.
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