28 research outputs found

    Transition Within Leeward Plane of Axisymmetric Bodies at Incidence in Supersonic Flow

    Get PDF
    Boundary layer transition along the leeward symmetry plane of axisymmetric bodies at nonzero angle of attack in supersonic flow was investigated experimentally and numerically as part of joint research between the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, straight cone and flared cone) with different axial pressure gradients was measured in two different facilities with different unit Reynolds numbers. The semi-Sears-Haack body and flared cone were designed at JAXA to broaden the range of axial pressure distributions. For a body shape with an adverse pressure gradient (i.e., flared cone), the experimentally measured transition patterns show an earlier transition location along the leeward symmetry plane in comparison with the neighboring azimuthal locations. For nearly zero pressure gradient (i.e.,straight cone), this feature is only observed at the larger unit Reynolds number. Later transition along the leeward plane was observed for the remaining two body shapes with a favorable pressure gradient. The observed transition patterns are only partially consistent with the numerical predictions based on linear stability analysis. Additional measurements are used in conjunction with the stability computations to explore the phenomenon of leeward line transition and the underlying transition mechanism in further detail

    Computational Investigation of Supersonic Boundary Layer Transition Over Canonical Fuselage Nose Configurations

    Get PDF
    Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out

    Nonlinear Analysis of the First-Mode Dominated Transition in Supersonic Boundary Layers on Natural-Laminar-Flow Wing

    No full text

    Transition Analysis of Supersonic Natural Laminar Flow Wing at Flight Test Condition using PSE Approach

    No full text

    Transition Analysis with Complex Ray Theory for Supersonic Natural Laminar Flow Wing

    No full text

    Boundary Layer Transition Control for Highly Swept Wing using DBD Plasma Actuator

    No full text

    Supersonic Natural-Laminar-Flow Wing-Design Concept at High-Reynolds-Number Conditions

    No full text
    corecore