57 research outputs found
Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration
We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku
satellites. We found rapid spectral softening during both the prompt tail phase
and the decline phase of an X-ray flare in the BAT and XRT data. The observed
spectra were fit by power-law photon indices which rapidly changed from to within a few hundred
seconds in the prompt tail. This is one of the steepest X-ray spectra ever
observed, making it quite difficult to explain by simple electron acceleration
and synchrotron radiation. Then, we applied an alternative spectral fitting
using a broken power-law with exponential cutoff (BPEC) model. It is valid to
consider the situation that the cutoff energy is equivalent to the synchrotron
frequency of the maximum energy electrons in their energy distribution. Since
the spectral cutoff appears in the soft X-ray band, we conclude the electron
acceleration has been inefficient in the internal shocks of GRB 060904A. These
cutoff spectra suddenly disappeared at the transition time from the prompt tail
phase to the shallow decay one. After that, typical afterglow spectra with the
photon indices of 2.0 are continuously and preciously monitored by both XRT and
Suzaku/XIS up to 1 day since the burst trigger time. We could successfully
trace the temporal history of two characteristic break energies (peak energy
and cutoff energy) and they show the time dependence of while the following afterglow spectra are quite stable. This fact
indicates that the emitting material of prompt tail is due to completely
different dynamics from the shallow decay component. Therefore we conclude the
emission sites of two distinct phenomena obviously differ from each other.Comment: 19 pages, 9 figures, accepted for publication in PASJ (Suzaku 2nd
Special Issue
T Cell-Intrinsic and -Extrinsic Contributions of the IFNAR/STAT1-Axis to Thymocyte Survival
STAT1 is an essential part of interferon signaling, and STAT1-deficiency results in heightened susceptibility to infections or autoimmunity in both mice and humans. Here we report that mice lacking the IFNα/β-receptor (IFNAR1) or STAT1 display impaired deletion of autoreactive CD4+CD8+-T-cells. Strikingly, co-existence of WT T cells restored thymic elimination of self-reactive STAT1-deficient CD4+CD8+-T cells. Analysis of STAT1-deficient thymocytes further revealed reduced Bim expression, which was restored in the presence of WT T cells. These results indicate that type I interferons and STAT1 play an important role in the survival of MHC class I-restricted T cells in a T cell intrinsic and non-cell intrinsic manner that involves regulation of Bim expression through feedback provided by mature STAT1-competent T cells
Recommended from our members
Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks
无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216
Process design of a thermochemical cycle for hydrogen production compatible with nuclear fusion heat sources
We quantitatively design a hydrogen-producing copper–chlorine thermochemical cycle that is thermally combinable with nuclear fusion reactors. The mass and heat balances throughout the cycle, including the hydrolysis, pyrolysis, and electrolysis reaction processes, accompanied by multiple separation steps, are numerically investigated. Through the process design, the feasibility of the practical operation of the hydrogen production cycle is presented, and the thermal and electric power required for the operation is evaluated. As we first design a process with straightforward employment of the exact reaction condition from an earlier experimental study of the electrolysis process, the heat required for the condensation of CuCl₂ solution is found enormous. By modifying the process condition with an increased electrolyte concentration, to reduce the amount of H₂O to be evaporated in the CuCl₂ condensation, the total heat for the cycle significantly decreases from 1270 GJ·h⁻¹ (20.3 MJ·mol-H₂⁻¹) to 204 GJ·h⁻¹ (3.26 MJ·mol-H₂⁻¹). This value is still larger than the heat required for hydrogen production by H₂O electrolysis, 48.2 GJ·h⁻¹ (0.772 MJ·mol-H₂⁻¹), but an extrapolation towards the saturated CuCl concentration achieves 46.0 GJ·h⁻¹ (0.736 MJ·mol-H₂⁻¹). For energy-cost performance improvement of the thermochemical cycle, the development of the electrolytic cell operable with a high concentration of CuCl aqueous solution is thus found to be of primary effectiveness
- …