57 research outputs found

    Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    Full text link
    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from Γ=1.510.03+0.04\Gamma = 1.51^{+0.04}_{-0.03} to Γ=5.300.59+0.69\Gamma = 5.30^{+0.69}_{-0.59} within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectra suddenly disappeared at the transition time from the prompt tail phase to the shallow decay one. After that, typical afterglow spectra with the photon indices of 2.0 are continuously and preciously monitored by both XRT and Suzaku/XIS up to 1 day since the burst trigger time. We could successfully trace the temporal history of two characteristic break energies (peak energy and cutoff energy) and they show the time dependence of t3t4\propto t^{-3} \sim t^{-4} while the following afterglow spectra are quite stable. This fact indicates that the emitting material of prompt tail is due to completely different dynamics from the shallow decay component. Therefore we conclude the emission sites of two distinct phenomena obviously differ from each other.Comment: 19 pages, 9 figures, accepted for publication in PASJ (Suzaku 2nd Special Issue

    T Cell-Intrinsic and -Extrinsic Contributions of the IFNAR/STAT1-Axis to Thymocyte Survival

    Get PDF
    STAT1 is an essential part of interferon signaling, and STAT1-deficiency results in heightened susceptibility to infections or autoimmunity in both mice and humans. Here we report that mice lacking the IFNα/β-receptor (IFNAR1) or STAT1 display impaired deletion of autoreactive CD4+CD8+-T-cells. Strikingly, co-existence of WT T cells restored thymic elimination of self-reactive STAT1-deficient CD4+CD8+-T cells. Analysis of STAT1-deficient thymocytes further revealed reduced Bim expression, which was restored in the presence of WT T cells. These results indicate that type I interferons and STAT1 play an important role in the survival of MHC class I-restricted T cells in a T cell intrinsic and non-cell intrinsic manner that involves regulation of Bim expression through feedback provided by mature STAT1-competent T cells

    Process design of a thermochemical cycle for hydrogen production compatible with nuclear fusion heat sources

    No full text
    We quantitatively design a hydrogen-producing copper–chlorine thermochemical cycle that is thermally combinable with nuclear fusion reactors. The mass and heat balances throughout the cycle, including the hydrolysis, pyrolysis, and electrolysis reaction processes, accompanied by multiple separation steps, are numerically investigated. Through the process design, the feasibility of the practical operation of the hydrogen production cycle is presented, and the thermal and electric power required for the operation is evaluated. As we first design a process with straightforward employment of the exact reaction condition from an earlier experimental study of the electrolysis process, the heat required for the condensation of CuCl₂ solution is found enormous. By modifying the process condition with an increased electrolyte concentration, to reduce the amount of H₂O to be evaporated in the CuCl₂ condensation, the total heat for the cycle significantly decreases from 1270 GJ·h⁻¹ (20.3 MJ·mol-H₂⁻¹) to 204 GJ·h⁻¹ (3.26 MJ·mol-H₂⁻¹). This value is still larger than the heat required for hydrogen production by H₂O electrolysis, 48.2 GJ·h⁻¹ (0.772 MJ·mol-H₂⁻¹), but an extrapolation towards the saturated CuCl concentration achieves 46.0 GJ·h⁻¹ (0.736 MJ·mol-H₂⁻¹). For energy-cost performance improvement of the thermochemical cycle, the development of the electrolytic cell operable with a high concentration of CuCl aqueous solution is thus found to be of primary effectiveness

    Ca (II)-EDTA shows antimicrobial activity against periodontopathic bacteria

    No full text
    corecore