4,229 research outputs found

    Temperature Power Law of Equilibrium Heavy Particle Density

    Full text link
    A standard calculation of the energy density of heavy stable particles that may pair-annihilate into light particles making up thermal medium is performed to second order of coupling, using the technique of thermal field theory. At very low temperatures a power law of temperature is derived for the energy density of the heavy particle. This is in sharp contrast to the exponentially suppressed contribution estimated from the ideal gas distribution function. The result supports a previous dynamical calculation based on the Hartree approximation, and implies that the relic abundance of dark matter particles is enhanced compared to that based on the Boltzmann equation.Comment: 12 pages, LATEX file with 6 PS figure

    Quantum System under Periodic Perturbation: Effect of Environment

    Full text link
    In many physical situations the behavior of a quantum system is affected by interaction with a larger environment. We develop, using the method of influence functional, how to deduce the density matrix of the quantum system incorporating the effect of environment. After introducing characterization of the environment by spectral weight, we first devise schemes to approximate the spectral weight, and then a perturbation method in field theory models, in order to approximately describe the environment. All of these approximate models may be classified as extended Ohmic models of dissipation whose differences are in the high frequency part. The quantum system we deal with in the present work is a general class of harmonic oscillators with arbitrary time dependent frequency. The late time behavior of the system is well described by an approximation that employs a localized friction in the dissipative part of the correlation function appearing in the influence functional. The density matrix of the quantum system is then determined in terms of a single classical solution obtained with the time dependent frequency. With this one can compute the entropy, the energy distribution function, and other physical quantities of the system in a closed form. Specific application is made to the case of periodically varying frequency. This dynamical system has a remarkable property when the environmental interaction is switched off: Effect of the parametric resonance gives rise to an exponential growth of the populated number in higher excitation levels, or particle production in field theory models. The effect of the environment is investigated for this dynamical system and it is demonstrated that there existsComment: 55 pages, LATEX file plus 13 PS figures. A few calculational mistatkes and corresponding figure 1 in field theory model corrected and some changes made for publication in Phys. Rev.D (in press

    Large-Area Scintillator Hodoscope with 50 ps Timing Resolution Onboard BESS

    Get PDF
    We describe the design and performance of a large-area scintillator hodoscope onboard the BESS rigidity spectrometer; an instrument with an acceptance of 0.3 m^{2}sr. The hodoscope is configured such that 10 and 12 counters are respectively situated in upper and lower layers. Each counter is viewed from its ends by 2.5 inch fine-mesh photomultiplier tubes placed in a stray magnetic field of 0.2 Tesla. Various beam-test data are presented. Use of cosmic-ray muons at ground-level confirmed 50 ps timing resolution for each layer, giving an overall time-of-flight resolution of 70 ps rms using a pure Gaussian resolution function. Comparison with previous measurements on a similar scintillator hodoscope indicates good agreement with the scaling law that timing resolution is proportional to 1/Npe\sqrt{N_{\rm pe}}, where NpeN_{\rm pe} is the effective number of photoelectrons.Comment: 16 pages, 14 figure

    New Kinetic Equation for Pair-annihilating Particles: Generalization of the Boltzmann Equation

    Get PDF
    A convenient form of kinetic equation is derived for pair annihilation of heavy stable particles relevant to the dark matter problem in cosmology. The kinetic equation thus derived extends the on-shell Boltzmann equation in a most straightforward way, including the off-shell effect. A detailed balance equation for the equilibrium abundance is further analyzed. Perturbative analysis of this equation supports a previous result for the equilibrium abundance using the thermal field theory, and gives the temperature power dependence of equilibrium value at low temperatures. Estimate of the relic abundance is possible using this new equilibrium abundance in the sudden freeze-out approximation.Comment: 19 pages, LATEX file with 2 PS figure

    Disorder Induced Ferromagnetism in CaRuO3

    Full text link
    The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. Here we show that paramagnetic CaRuO3 can be made ferromagnetic by very small amounts of partial substitution of Ru by Ti. Magnetic hysteresis loops are observed at 5 K for as little as 2% Ti substitution. Ti is non-magnetic and isovalent with Ru, indicating that the primary effect of the substitution is the disruption of the magnetic ground state of CaRuO3 through disorder. The data suggest that CaRuO3 is poised at a critical point between ferromagnetic and paramagnetic ground states
    • …
    corecore