5,288 research outputs found

    A variety of lepton number violating processes related to Majorana neutrino masses

    Get PDF
    A Majorana type of the neutrino mass matrix induces a class of lepton number violating processes. Cross sections of these reactions are given in terms of the neutrino mass matrix element, and a semi-realistic event rate is estimated. These processes provide mass and mixing parameters not directly accessible by the neutrino oscillation experiments. If these processes are discovered with a larger rate than given here, it would imply a new physics of the lepton number violation not directly related to the Majorana neutrino mass, such as R-parity violating operators in SUSY models.Comment: 15 pages, 1 figur

    Weak Magnetic Order in the Bilayered-hydrate Nax_{x}CoO2y_{2}\cdot yH2_{2}O Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting Nax_xCoO2_{2} \cdot yyH2_2O

    Full text link
    A weak magnetic order was found in a non-superconducting bilayered-hydrate Nax_{x}CoO2y_{2}\cdot yH2_{2}O sample by a Co Nuclear Quadrupole Resonance (NQR) measurement. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T1/T_1T shows a prominent peak at 5.5 K, below which a Co-NQR peak splits due to an internal field at the Co site. From analyses of the Co NQR spectrum at 1.5 K, the internal field is evaluated to be \sim 300 Oe and is in the abab-plane. The magnitude of the internal field suggests that the ordered moment is as small as 0.015\sim 0.015 μB\mu_B using the hyperfine coupling constant reported previously. It is shown that the NQR frequency νQ\nu_Q correlates with magnetic fluctuations from measurements of NQR spectra and 1/T1T1/T_1T in various samples. The higher-νQ\nu_Q sample has the stronger magnetic fluctuations. A possible phase diagram in Nax_{x}CoO2y_{2}\cdot yH2_{2}O is depicted using TcT_c and νQ\nu_Q, in which the crystal distortion along the c-axis of the tilted CoO2_2 octahedron is considered to be a physical parameter. Superconductivity with the highest TcT_c is seemingly observed in the vicinity of the magnetic phase, suggesting strongly that the magnetic fluctuations play an important role for the occurrence of the superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp

    Prolonged Decay and CP-asymmetry

    Full text link
    Time evolution of unstable particles that occur in the expanding universe is investigated. The off-shell effect not included in the Boltzmann-like equation is important for the decay process when the temperature becomes much below the mass of unstable particle. When the off-shell effect is taken into account, the thermal abundance of unstable particles at low temperatures has a power law behavior of temperature TT, ΓM(TM)α+1\frac{\Gamma}{M}(\frac{T}{M})^{\alpha + 1} unlike the Boltzmann suppressed eM/Te^{-M/T}, with the power α\alpha related to the spectral rise near the threshold of the decay and with Γ\Gamma the decay rate. Moreover, the relaxation time towards the thermal value is not governed by the exponential law; instead, it is the power law of time. The evolution equation for the occupation number and the number density of the unstable particle is derived, when both of these effects, along with the cosmic expansion, are included. We also critically examine how the scattering off thermal particles may affect the off-shell effect to the unstable particle. As an application showing the importance of the off-shell effect we compute the time evolution of the baryon asymmetry generated by the heavy XX boson decay. It is shown that the out-of equilibrium kinematics previously discussed is considerably changed.Comment: 33 pages, LATEX file with 9 PS figure
    corecore