43 research outputs found

    Dissolved methane distribution in surface seawater and its controlling factors  in mid- and high-latitudes in the Southern Ocean

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IB1] 海氷域における生物地球化学的研究11月17日(火) 統計数理研究所 セミナー室1(D305

    南大洋インド洋区季節海氷域における溶存炭酸物質の季節変化

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IB1] 海氷域における生物地球化学的研究11月17日(火) 統計数理研究所 セミナー室1(D305

    The effect of sea-ice growth on air–sea CO2 flux in a tank experiment

    Get PDF
    In order to clarify the CO2 exchange between the seawater and the overlying air during the sea-ice formation, we have carried out tank experiments in a low-temperature room. CO2 concentration above the sea-ice began to increase since the beginning of the sea-ice formation, and increased at larger rates with time and the decrease in air temperature. This increase of CO2 concentration in air was mainly caused by the increase in dissolved inorganic carbon concentration in the brine of the upper part of sea-ice, changes in CO2 solubility and dissociation constants of carbonic acid. The CO2 flux increased logarithmically with time, and reached a level of 2 × 10-4 to 5 × 10-4 g-C m-2 hr-1 at 50 mm ice thickness. We found that the CO2 flux was correlated well with the salinity and negatively with the volume of the brine in the upper part of the sea-ice. These suggested the larger role of the difference in partial pressure of CO2 between brine and air as compared to that of competitive change in the brine volume. Present results suggest the necessity to examine the CO2 exchange between the seawater and air in seasonal sea-ice areas

    Effects of snow, snowmelting and refreezing processes on air-sea-ice CO2 flux

    Get PDF
    The air-sea-ice CO2 flux was measured in the ice-covered Saroma-ko, a lagoon on the northeastern coast of Hokkaido, Japan, using a chamber technique. The air-sea-ice CO2 flux ranged from -1.8 to +0.5 mg Cm^[-2] h^[-1] (where negative values indicate a sink for atmospheric CO2). The partial pressure of CO2 (pCO2) in the brine of sea ice was substantially lower than that of the atmosphere, primarily because of the influence of the under-ice plume from the Saromabetsu river located in the southeastern part of the lagoon. This suggests that the brine had the ability to take up atmospheric CO2 into the sea ice. However, the snow deposited over the sea ice and the superimposed ice that formed from snowmelting and refreezing partially blocked CO2 diffusion, acting as an impermeable medium for CO2 transfer. Our results suggest that the air-sea-ice CO2 flux was dependent not only on the difference in pCO2 between the brine and the overlying air, but also on the status of the ice surface. These results provide the necessary evidence for evaluation of the gas exchange processes in ice-covered seas
    corecore