579 research outputs found

    Estimating the Eddy Viscosity Profile from Velocity Spirals in the Ekman Boundary Layer

    Get PDF
    Final Form: December 18, 2014Turbulent mixing induced by tidal currents near the sea bottom plays a key role in coastal and shallow sea environments. Many attempts have been made to quantify turbulent mixing near the seabed, such as velocity microstructure measurements with microstructure profilers and turbulent Reynolds stress measurements using acoustic Doppler current profilers (ADCPs). This study proposes an alternative method in which the Ekman balance equations are solved with measured velocity spirals to estimate the eddy viscosity profile. Three schemes (schemes 1, 2, and 3) are described in this paper; schemes 1 and 2 were used in previous studies, while scheme 3 is newly proposed in the present study. The performance of the three schemes was tested using velocity spirals simulated with an idealized eddy viscosity profile, showing that scheme 2 is useful if the random measurement errors are small, while scheme 3 is useful when the errors in the Ekman balance are small. The performance was also evaluated using measured velocity spirals. This method utilizes velocity measured with standard ADCPs operated in normal modes, allowing for easier and more frequent quantifications of the mixing averaged over longer periods

    Holographic storage of multiple coherence gratings in a Bose-Einstein condensate

    Full text link
    We demonstrate superradiant conversion between a two-mode collective atomic state and a single-mode light field in an elongated cloud of Bose-condensed atoms. Two off-resonant write beams induce superradiant Raman scattering, producing two independent coherence gratings with a different wave vector in the cloud. By applying phase-matched read beams after a controllable delay, the gratings can be selectively converted into the light field also in a superradiant way. Due to the large cooperativity parameter and the small velocity width of the condensate, a high conversion efficiency of >70> 70 % and a long storage time of >120> 120 μ\mus were achieved.Comment: 5 pages, 4 figure

    How does torsional rigidity affect the wrapping transition of a semiflexible chain around a spherical core?

    Full text link
    We investigated the effect of torsional rigidity of a semiflexible chain on the wrapping transition around a spherical core, as a model of nucleosome, the fundamental unit of chromatin. Through molecular dynamics simulation, we show that the torsional effect has a crucial effect on the chain wrapping around the core under the topological constraints. In particular, the torsional stress (i) induces the wrapping/unwrapping transition, and (ii) leads to a unique complex structure with an antagonistic wrapping direction which never appears without the topological constraints. We further examine the effect of the stretching stress for the nucleosome model, in relation to the unique characteristic effect of the torsional stress on the manner of wrapping

    Complete temporal mode characterization of non-Gaussian states by dual homodyne measurement

    Full text link
    Optical quantum states defined in temporal modes, especially non-Gaussian states like photon-number states, play an important role in quantum computing schemes. In general, the temporal-mode structures of these states are characterized by one or more complex functions called temporal-mode functions (TMFs). Although we can calculate TMF theoretically in some cases, experimental estimation of TMF is more advantageous to utilize the states with high purity. In this paper, we propose a method to estimate complex TMFs. This method can be applied not only to arbitrary single-temporal-mode non-Gaussian states but also to two-temporal-mode states containing two photons. This method is implemented by continuous-wave (CW) dual homodyne measurement and doesn't need prior information of the target states nor state reconstruction procedure. We demonstrate this method by analyzing several experimentally created non-Gaussian states

    Temporal change in rock-magnetic properties of volcanic ashes ejected during a 1-year eruption event: a case study on the Aso Nakadake 2019-2020 eruption

    Get PDF
    We investigated temporal changes in the rock-magnetic properties of volcanic ash ejected from the Aso Nakadake volcano during a sequence of ash eruptions from 2019 to 2020. For 39 volcanic ash samples, magnetic hysteresis parameters, including saturation magnetization (M-s), saturation remanent magnetization (M-rs), coercivity (B-c), and coercivity of remanence (B-cr), were obtained. Curie temperature (T-c) of the samples was also estimated using thermomagnetic analyses. Titanium-rich and -poor titanomagnetites were the dominant magnetic minerals in the volcanic ash, of which the titanium-rich phase was dominant. Systematic magnetic measurements of the volcanic ash ejected during the 1-year eruption event indicate that temporal changes in the hysteresis parameters occurred throughout the event. These temporal changes suggest that the M-rs/M-s and B-c values of the volcanic ash increased considerably during several periods. The clear increases in M-rs/M-s and B-c, associated with the central peak in FORC diagrams, indicate that non-interacting single-domain grains increased. For these high M-rs/M-s and B-c samples, thermal demagnetizations of 3-axis IRM show that the low unblocking-temperature component up to 250-300 & DEG;C has apparently higher coercivity, suggesting that the above-mentioned, non-interacting single-domain grains are Ti-rich titanomagnetite. Interestingly, the high M-rs/M-s and B-c values were synchronous with observations of volcanic glow. These results suggest that changes in the magnetic properties of titanomagnetite grains in volcanic ash reflect changes in physical conditions from the vent to the conduit of the volcano

    Schr\"odinger's cat in an optical sideband

    Get PDF
    We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beamsplitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is downconverted to the carrier frequency to provide a trigger photon. An optical Schr\"odinger's cat state is created by applying the propesed method to a squeezed state at 500MHz sideband, which is generated by an optical parametric oscillator. The Wigner function of the cat state reconstructed from a direct homodyne measurement of the 500MHz sideband modes shows the negativity of W(0,0)=0.088±0.001W(0,0) = -0.088\pm0.001 without any loss corrections.Comment: 11 pages, 9 figure
    corecore