79 research outputs found

    The apelin‑apelin receptor signaling pathway in fibroblasts is involved in tumor growth via p53 expression of cancer cells

    Get PDF
    Cancer-associated fibroblasts (CAFs) are pivotal in tumor progression. TP53-deficiency in cancer cells is associated with robust stromal activation. The apelin-apelin receptor (APJ) system has been implicated in suppressing fibroblast-to-myofibroblast transition in non-neoplastic organ fibrosis. The present study aimed to elucidate the oncogenic role of the apelin-APJ system in tumor fibroblasts. APJ expression and the effect of APJ suppression in fibroblasts were investigated for p53 status in cancer cells using human cell lines (TP53-wild colon cancer, HCT116, and Caco-2; TP53-mutant colon cancer, SW480, and DLD-1; and colon fibroblasts, CCD-18Co), resected human tissue samples of colorectal cancers, and immune-deficient nude mouse xenograft models. The role of exosomes collected by ultracentrifugation were also analyzed as mediators of p53 expression in cancer cells and APJ expression in fibroblasts. APJ expression in fibroblasts co-cultured with p53-suppressed colon cancer cells (HCT116sh p53 cells) was significantly lower than in control colon cancer cells (HCT116sh control cells). APJ-suppressed fibroblasts treated with an antagonist or small interfering RNA showed myofibroblast-like properties, including increased proliferation and migratory abilities, via accelerated phosphorylation of Sma- and Mad-related protein 2/3 (Smad2/3). In addition, xenografts of HCT116 cells with APJ-suppressed fibroblasts showed accelerated tumor growth. By contrast, apelin suppressed the upregulation of phosphorylated Smad2/3 in fibroblasts. MicroRNA 5703 enriched in exosomes derived from HCT116sh p53 cells inhibited APJ expression, and inhibition of miR-5703 diminished APJ suppression in fibroblasts caused by cancer cells. APJ suppression from a specific microRNA in cancer cell-derived exosomes induced CAF-like properties in fibroblasts. Thus, the APJ system in fibroblasts in the tumor microenvironment may be a promising therapeutic target.Saiki H., Hayashi Y., Yoshii S., et al. The apelin‑apelin receptor signaling pathway in fibroblasts is involved in tumor growth via p53 expression of cancer cells. International Journal of Oncology 63, 139 (2023); https://doi.org/10.3892/ijo.2023.5587

    Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study)

    Get PDF
    Ossification of the posterior longitudinal ligament (OPLL) can cause severe and irreversible paralysis in not only the cervical spine but also the thoracolumbar spine. To date, however, the prevalence and distribution of OPLL in the whole spine has not been precisely evaluated in patients with cervical OPLL. Therefore, we conducted a multi-center study to comprehensively evaluate the prevalence and distribution of OPLL using multi-detector computed tomography (CT) images in the whole spine and to analyze what factors predict the presence of ossified lesions in the thoracolumbar spine in patients who were diagnosed with cervical OPLL by plain X-ray. Three hundred and twenty-two patients with a diagnosis of cervical OPLL underwent CT imaging of the whole spine. The sum of the levels in which OPLL was present in the whole spine was defined as the OP-index and used to evaluate the extent of ossification. The distribution of OPLL in the whole spine was compared between male and female subjects. In addition, a multiple regression model was used to ascertain related factors that affected the OP-index. Among patients with cervical OPLL, women tended to have more ossified lesions in the thoracolumbar spine than did men. A multiple regression model revealed that the OP-index was significantly correlated with the cervical OP-index, sex (female), and body mass index. Furthermore, the prevalence of thoracolumbar OPLL in patients with a cervical OP-index ≄ 10 was 7.8 times greater than that in patients with a cervical OP-index ≀ 5. The results of this study reveal that the extent of OPLL in the whole spine is significantly associated with the extent of cervical OPLL, female sex, and obesity

    Current Status of Next-Generation Sequencing-Based Cancer Genome Profiling Tests in Japan and Prospects for Liquid Biopsy

    No full text
    Next-generation sequencing-based comprehensive genome profiling (CGP) testing, OncoGuide NCC Oncopanel System, and FoundationOne CDx Cancer Genomic Profile have been covered by the Japanese national health insurance system since June 2019. Because CGP was initially developed to enroll patients into an early-phase clinical trial for solid tumors, its approved indications have been limited to patients who have completed the standard chemotherapy treatment. Approximately 14,000 cases have been registered with the Center for Cancer Genomics and Advanced Therapeutics as of March 2021. Measuring the drug access rate is not enough due to patients’ deteriorating condition during CGP analysis and due to the limited number of ongoing clinical trials available, although tumor-agnostic therapies, such as the use of pembrolizumab in high microsatellite-instable solid tumors and in conditions with a high tumor mutational burden (≄10 mut/Mb) as well as the use of entrectinib and larotrectinib in NTRK fusion-positive tumors have been approved in Japan. Moreover, since this analysis is performed using DNA derived from tumor tissue, it is difficult to perform CGP in cases in which an insufficient amount of tissue exists. Thus, noninvasive blood-based assays have been developed, and CGP panels using circulating tumor DNA from blood were approved in March 2021. However, cost, timing, and the number of tests allowed by the health system have not yet been determined. Therefore, in this review, we outline the current status and issues of CGP testing using tumor tissues as well as the expectations and limitations of liquid biopsy for use in Japanese clinical practice

    Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules

    No full text
    The Self-localizing Ligand-Induced Protein Translocation(SLIPT) system is an emerging platform that controls protein localization in living cells using synthetic self-localizing ligands (SLs). Here, we report a chemogenetic SLIPT system for inducing protein translocation from the cytoplasm to the surface of the endoplasmic reticulum (ER) and Golgi membranes, referred to as endomembranes.By screening a series of lipid-trimethoprim (TMP) conjugates, we found oleic acid-tethered TMP (oleTMP) to be the optimal SL that efficiently relocated and anchored Escherichiacoli dihydrofolate reductase (eDHFR)-fusion proteins toendomembranes. We showed that oleTMP mediated protein anchoring to endomembranes within minutes and could be reversed by the addition of free TMP. We also applied the endomembrane SLIPT system to artificially activate endomembrane Ras and inhibit the active nuclear transport of extracellular signal-regulated kinase (ERK), demonstrating its applicability for manipulating biological processes in living cells. We envision that the present oleTMP-based SLIPT system, which affords rapid and reversible control of protein anchoring to endomembranes, will offer a new unique tool for the study and control of spatiotemporally regulated cell signaling processes

    Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides

    No full text
    New protocols for controlled reduction of carboxamides to either alcohols or amines were established using a combination of sodium hydride (NaH) and zinc halides (ZnX2 ). Use of a different halide on ZnX2 dictates the selectivity, wherein the NaH-ZnI2 system delivers alcohols and NaH-ZnCl2 gives amines. Extensive mechanistic studies by experimental and theoretical approaches imply that polymeric zinc hydride (ZnH2 )∞ is responsible for alcohol formation, whereas dimeric zinc chloride hydride (H-Zn-Cl)2 is the key species for the production of amines.Ministry of Education (MOE)Accepted versionThis work was supported by funding from Nanyang Technological University (NTU) (for S.C.), the Singapore Ministry of Education (Academic Research Fund Tier 1: RG10/17 for S.C.), and Takeda Science Foundation (for R.T.). Computations were performed using Research Center for Computational Science at Okazaki, Japan. We thank Prof. Subodh G. Mhaisalkar (School of Materials Science and Engineering, NTU) and Prof. Han Sen Soo (School of Physical and Mathematical Sciences, NTU) for the assistance in powder X‐ray diffraction (XRD) experiments

    Exchange Coupling and Its Chemical Trend Studied by High-Frequency EPR on Heterometallic [Ln<sub>2</sub>Ni] Complexes

    No full text
    We applied high-frequency electron paramagnetic resonance to trinuclear 4f–3d heterometallic complexes, [{Ln­(hfac)<sub>3</sub>}<sub>2</sub>{Ni­(dpk)<sub>2</sub>(py)<sub>2</sub>}] (Ln = Y, Gd, Tb, and Ho; hfac = hexafluoroacetylacetonate, dpk = di-2-pyridyl ketoximate, and py = pyridine), and determined the exchange parameter <i>J</i><sub>Ln–Ni</sub> as well as nickel­(II) zero-field splitting parameters. In contrast to the antiferromagnetic Dy analogue, ferromagnetic couplings were precisely characterized as <i>J</i><sub>Gd–Ni</sub>/<i>k</i><sub>B</sub> = +0.301(4) K, <i>J</i><sub>Tb–Ni</sub>/<i>k</i><sub>B</sub> = +0.216(12) K, and <i>J</i><sub>Ho–Ni</sub>/<i>k</i><sub>B</sub> = +0.110(3) K (defined as −<i>J</i><sub>Ln–Ni</sub>∑<i>J</i><sub>Ln</sub><sup><i>z</i></sup><i>S</i><sub>Ni</sub>)
    • 

    corecore