2,257 research outputs found
Three-dimensional orbits of metal-poor halo stars and the formation of the Galaxy
We present the three-dimensional orbital motions of metal-poor stars in
conjunction with their metal abundances, for the purpose of getting insight
into the formation process of the Galaxy. Our sample stars, which include
metal-deficient red giants and RR Lyrae variables observed by the Hipparcos
satellite, are least affected by known systematics, stemmed from kinematic
bias, metallicity calibration, and secondary metal contamination of stellar
surface. We find, for the stars in the metallicity range of [Fe/H]<-1, that
there is no evidence for the correlation between [Fe/H] and their orbital
eccentricities e. Even for [Fe/H]<-1.6, about 16% of the stars have e less than
0.4. We show that the e distribution of orbits for [Fe/H]<-1.6 is independent
of the height |z| away from the Galactic plane, whereas for [Fe/H]>-1.6 the
stars at |z|>1 kpc are systematically devoid of low-e orbits with e<0.6. This
indicates that low-e stars with [Fe/H]<-1.6 belong to the halo component,
whereas the rapidly-rotating thick disk with a scale height about 1 kpc has a
metal-weak tail in the range of -1.6<[Fe/H]<-1. The fraction of this metal-weak
thick disk appears to be only less than 20%. The significance of these results
for the early evolution of the Galaxy is briefly discussed.Comment: 11 pages, 3 figures, AASTeX, to appear in ApJ Letter
Spin-Glass-like Transition and Hall Resistivity of Y2-xBixIr2O7
Various physical properties of the pyrochlore oxide Y2-xBixIr2O7 have been
studied. The magnetizations M measured under the conditions of the
zero-field-cooling(ZFC) and the field-cooling(FC) have different values below
the temperature T=TG. The anomalous T-dependence of the electrical
resistivities r and the thermoelectric powers S observed at around TG indicates
that the behavior of the magnetization is due to the transition to the state
with the spin freezing. In this spin-frozen state, the Hall resistivities rH
measured with the ZFC and FC conditions are found to have different values,
too, in the low temperature phase (T<TG). Possible mechanisms which induce such
the hysteretic behavior are discussed.Comment: 9 pages, 7 figures, J. Phys. Soc. Jpn. 72 (2003) No.
Evolution of the Luminosity Density in the Universe: Implications for the Nonzero Cosmological Constant
We show that evolution of the luminosity density of galaxies in the universe
provides a powerful test for the geometry of the universe. Using reasonable
galaxy evolution models of population synthesis which reproduce the colors of
local galaxies of various morphological types, we have calculated the
luminosity density of galaxies as a function of redshift . Comparison of the
result with recent measurements by the Canada-France Redshift Survey in three
wavebands of 2800{\AA}, 4400{\AA}, and 1 micron at z<1 indicates that the
\Lambda-dominated flat universe with \lambda_0 \sim 0.8 is favored, and the
lower limit on \lambda_0 yields 0.37 (99% C.L.) or 0.53 (95% C.L.) if
\Omega_0+\lambda_0=1. The Einstein-de Sitter universe with (\Omega_0,
\lambda_0)=(1, 0) and the low-density open universe with (0.2, 0) are however
ruled out with 99.86% C.L. and 98.6% C.L., respectively. The confidence levels
quoted apply unless the standard assumptions on galaxy evolution are
drastically violated. We have also calculated a global star formation rate in
the universe to be compared with the observed rate beyond z \sim 2. We find
from this comparison that spiral galaxies are formed from material accretion
over an extended period of a few Gyrs, while elliptical galaxies are formed
from initial star burst at z >~ 5 supplying enough amount of metals and
ionizing photons in the intergalactic medium.Comment: 11 pages including 3 figures, LaTeX, uses AASTeX. To Appear in ApJ
Letter
Kinematics of Metal-Poor Stars in the Galaxy. II. Proper Motions for a Large Non-Kinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected without
kinematic bias, and with available radial velocities, distance estimates, and
metal abundances in the range 0.0 <= [Fe/H] <= -4.0. This update of the Beers
and Sommer-Larsen (1995) catalog includes newly-derived homogeneous photometric
distance estimates, revised radial velocities for a number of stars with
recently obtained high-resolution spectra, and refined metallicities for stars
originally identified in the HK objective-prism survey (which account for
nearly half of the catalog) based on a recent re-calibration. A subset of 1258
stars in this catalog have available proper motions, based on measurements
obtained with the Hipparcos astrometry satellite, or taken from the updated
Astrographic Catalogue (AC 2000; second epoch positions from either the Hubble
Space Telescope Guide Star Catalog or the Tycho Catalogue), the Yale/San Juan
Southern Proper Motion (SPM) Catalog 2.0, and the Lick Northern Proper Motion
(NPM1) Catalog. Our present catalog includes 388 RR Lyrae variables (182 of
which are newly added), 38 variables of other types, and 1680 non-variables,
with distances in the range 0.1 to 40 kpc.Comment: 31 pages, including 8 figures, to appear in AJ (June 2000), full
paper with all figures embedded available at
http://pluto.mtk.nao.ac.jp/people/chiba/preprint/halo4
Hierarchical Formation of Galaxies with Dynamical Response to Supernova-Induced Gas removal
We reanalyze the formation and evolution of galaxies in the hierarchical
clustering scenario. Using a semi-analytic model (SAM) of galaxy formation
described in this paper, which we hereafter call the Mitaka model, we
extensively investigate the observed scaling relations of galaxies among
photometric, kinematic, structural and chemical characteristics. In such a
scenario, spheroidal galaxies are assumed to be formed by major merger and
subsequent starburst, in contrast to the traditional scenario of monolithic
cloud collapse. As a new ingredient of SAMs, we introduce the effects of
dynamical response to supernova-induced gas removal on size and velocity
dispersion, which play an important role on dwarf galaxy formation. In previous
theoretical studies of dwarf galaxies based on the monolithic cloud collapse
given by Yoshii & Arimoto and Dekel & Silk, the dynamical response was treated
in the extremes of a purely baryonic cloud and a baryonic cloud fully supported
by surrounding dark matter. To improve this simple treatment, in our previous
paper, we formulated the dynamical response in more realistic, intermediate
situations between the above extremes. While the effects of dynamical response
depend on the mass fraction of removed gas from a galaxy, how much amount of
the gas remains just after major merger depends on the star formation history.
A variety of star formation histories are generated through the Monte Carlo
realization of merging histories of dark halos, and it is found that our SAM
naturally makes a wide variety of dwarf galaxies and their dispersed
characteristics as observed. (Abridged)Comment: 24 pages including 29 figures, using emulateapj.cls; accepted for
publication in Ap
Spectrophotometric Redshifts. A New Approach to the Reduction of Noisy Spectra and its Application to GRB090423
We have developed a new method, close in philosophy to the photometric
redshift technique, which can be applied to spectral data of very low
signal-to-noise ratio. Using it we intend to measure redshifts while minimising
the dangers posed by the usual extraction techniques. GRB afterglows have
generally very simple optical spectra over which the separate effects of
absorption and reddening in the GRB host, the intergalactic medium, and our own
Galaxy are superimposed. We model all these effects over a series of template
afterglow spectra to produce a set of clean spectra that reproduce what would
reach our telescope. We also model carefully the effects of the
telescope-spectrograph combination and the properties of noise in the data,
which are then applied on the template spectra. The final templates are
compared to the two-dimensional spectral data, and the basic parameters
(redshift, spectral index, Hydrogen absorption column) are estimated using
statistical tools. We show how our method works by applying it to our data of
the NIR afterglow of GRB090423. At z ~ 8.2, this was the most distant object
ever observed. We use the spectrum taken by our team with the Telescopio
Nazionale Galileo to derive the GRB redshift and its intrinsic neutral Hydrogen
column density. Our best fit yields z=8.4^+0.05/-0.03 and N(HI)<5x10^20 cm^-2,
but with a highly non-Gaussian uncertainty including the redshift range z [6.7,
8.5] at the 2-sigma confidence level. Our method will be useful to maximise the
recovered information from low-quality spectra, particularly when the set of
possible spectra is limited or easily parameterisable while at the same time
ensuring an adequate confidence analysis.Comment: 6 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Magnetization plateaux in the classical Shastry-Sutherland lattice
We investigated the classical Shastry-Sutherland lattice under an external
magnetic field in order to understand the recently discovered magnetization
plateaux in the rare-earth tetraborides compounds RB. A detailed study of
the role of thermal fluctuations was carried out by mean of classical spin
waves theory and Monte-Carlo simulations. Magnetization quasi-plateaux were
observed at 1/3 of the saturation magnetization at non zero temperature. We
showed that the existence of these quasi-plateaux is due to an entropic
selection of a particular collinear state. We also obtained a phase diagram
that shows the domains of existence of different spin configurations in the
magnetic field versus temperature plane.Comment: 4 pages, proceedings of HFM200
New limits on a cosmological constant from statistics of gravitational lensing
We present new limits on cosmological parameters from the statistics of
gravitational lensing, based on the recently revised knowledge of the
luminosity function and internal dynamics of E/S0 galaxies that are essential
in lensing high-redshift QSOs. We find that the lens models using updated
Schechter parameters for such galaxies, derived from the recent redshift
surveys combined with morphological classification, are found to give smaller
lensing probabilities than earlier calculated. Inconsistent adoption of these
parameters from a mixture of various galaxy surveys gives rise to systematic
biases in the results. We also show that less compact dwarf-type galaxies which
largely dominate the faint part of the Schechter-form luminosity function
contribute little to lensing probabilities, so that earlier lens models
overestimate incidents of small separation lenses. Applications of the lens
models to the existing lens surveys indicate that reproduction of both the
lensing probability of optical sources and the image separations of optical and
radio lenses is significantly improved in the revised lens models. The
likelihood analyses allow us to conclude that a flat universe with
Omega=0.3(+0.2-0.1) and Omega+Lambda=1 is most preferable, and a
matter-dominated flat universe with Lambda=0 is ruled out at 98 % confidence
level. These new limits are unaffected by inclusion of uncertainties in the
lens properties.Comment: 30 pages, 9 ps figures, AASTeX, ApJ in pres
- …