51 research outputs found

    Sawhorse-type diruthenium tetracarbonyl complexes containing porphyrin-derived ligands as highly selective photosensitizers for female reproductive cancer cells

    Get PDF
    Diruthenium tetracarbonyl complexes of the type [Ru2(CO)4(μ2-η2-O2CR)2L2] containing a Ru-Ru backbone with four equatorial carbonyl ligands, two carboxylato bridges, and two axial two-electron ligands in a sawhorse-like geometry have been synthesized with porphyrin-derived substituents in the axial ligands [1: R is CH3, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin], in the bridging carboxylato ligands [2: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is PPh3; 3: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane], or in both positions [4: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin]. Compounds 1-3 were assessed on different types of human cancer cells and normal cells. Their uptake by cells was quantified by fluorescence and checked by fluorescence microscopy. These compounds were taken up by human HeLa cervix and A2780 and Ovcar ovarian carcinoma cells but not by normal cells and other cancer cell lines (A549 pulmonary, Me300 melanoma, PC3 and LnCap prostate, KB head and neck, MDAMB231 and MCF7 breast, or HT29 colon cancer cells). The compounds demonstrated no cytotoxicity in the absence of laser irradiation but exhibited good phototoxicities in HeLa and A2780 cells when exposed to laser light at 652nm, displaying an LD50 between 1.5 and 6.5J/cm2 in these two cell lines and more than 15J/cm2 for the others. Thus, these types of porphyric compound present specificity for cancer cell lines of the female reproductive system and not for normal cells; thus being promising new organometallic photosensitizer

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    Crystal structure of 1,13,14-triazadibenz[a,j]anthracene 1,1,2,2-tetrachloroethane monosolvate

    No full text
    The asymmetric unit of the title compound, C19H11N3·C2H2Cl4, consists of one half-molecule of 1,13,14-triazadibenz[a,j]anthracene (dibenzo[c,h]-1.9,10-anthyridine, dbanth) and one half of 1,1,2,2-tetrachloroethane (TCE), both of which are located on a crystallographic twofold rotation axis. The dihedral angle between the planes of the terminal benzene rings in dbanth is 3.59 (7)° owing to the steric repulsion between the H atoms in the two benzo groups and the H atom in the central pyridine ring of the anthridine skeleton. In the crystal, π–π interactions between pyridine rings [centroid–centroid distances = 3.568 (2) and 3.594 (2) Å] link the dbanth molecules to form a one-dimensional columnar structure along the c axis. The dbanth and TCE molecules are connected through weak bifurcated C—H...(N,N) hydrogen bonds
    • …
    corecore