345 research outputs found

    Increases in Nonspecific Immunoglobulin E and Eosinophils after H. pylori Eradication

    Get PDF
    Helicobacter pylori infection has been reported to be inversely associated with allergic disorders. We by chance experienced a patient with atrophic gastritis who presented marked elevations of both nonspecific serum immunoglobulin E and eosinophil counts after H. pylori eradication. A 49-year-old Japanese man received eradication of H. pylori using lansoprazole 60 mg/day, amoxicillin 1,500 mg/day, and clarithromycin 400 mg/day for 7 days. Serum immunoglobulin E increased to more than four times its pretreatment level, 306 → 485 → 1,325 U/ml, and peripheral eosinophil counts increased to more than three times, 99 → 139 → 298 per μl. Deducing from the current case, H. pylori eradication might develop allergic disorders in some patients

    Mesoscopic Multimodal Imaging Provides New Insight to Tumor Tissue Evaluation : An Example of Macrophage Imaging of Hepatic Tumor using Organosilica Nanoparticles

    Get PDF
    Multimodal imaging using novel multifunctional nanoparticles provides new approach to biomedical field. Thiol-organosilica nanoparticles containing iron oxide magnetic nanoparticles (MNPs) and rhodamine B (thiol OS-MNP/Rho) were applied to multimodal imaging of hepatic tumor of Long−Evans Cinnamon (LEC) rat. The magnetic resonance imaging (MRI) of LEC rats revealed tumors in the liver clearly and semi-quantitatively due to a labeling of macrophages in liver. The fluorescent imaging (FI) showed abnormal fluorescent patterns of the liver at the mesoscopic level that was between macroscopic and microscopic level. We performed correlation analysis between optical imaging including FI and MRI. We found that the labeled macrophages located specific area in the tumor tissue and influenced the tumor size on MRI. In addition histological observation showed the labeled macrophages related specific tissue in the pathological region. We demonstrated a new approach to evaluate tumor tissue at the macroscopic and microscopic level as well as mesoscopic level using multimodal imaging

    A NuSTAR and XMM-Newton Study of the Two Most Actively Star-forming Green Pea Galaxies (SDSS J0749+3337 and SDSS J0822+2241)

    Get PDF
    We explore X-ray evidence for the presence of active galactic nuclei (AGNs) in the two most actively star-forming Green Pea galaxies (GPs), SDSS J0749+3337 and SDSS J0822+2241, which have star-formation rates (SFRs) of 123 M123~M_\odot yr1^{-1} and 78 M78~M_\odot yr1^{-1}, respectively. The GPs have red mid-infrared (MIR) spectral energy distributions and higher 22 μ\mum luminosities than expected from a proxy of the SFR (Hα\alpha luminosity), consistent with hosting AGNs with 2-10 keV luminosities of 1044\sim10^{44} erg s1^{-1}. We thus obtain and analyze the first hard (>> 10 keV) X-ray data observed with NuSTAR and archival XMM-Newton data below 10 keV. From the NuSTAR \approx20 ksec data, however, we find no significant hard X-ray emission. By contrast, soft X-ray emission with 0.5--8 keV luminosities of 1042\approx10^{42} erg s1^{-1} is significantly detected in both targets, which can be explained only by star formation (SF). A possible reason for the lack of clear evidence is that a putative AGN torus absorbs most of the X-ray emission. Applying a smooth-density AGN torus model, we determine minimum hydrogen column densities along the equatorial plane (NHeqN_{\rm H}^{\rm eq}) consistent with the non-detection. The results indicate NHeq2×1024N_{\rm H}^{\rm eq} \gtrsim 2\times10^{24} cm2^{-2} for SDSS J0749+3337 and NHeq5×1024N_{\rm H}^{\rm eq} \gtrsim 5\times10^{24} cm2^{-2} for SDSS J0822+2241. Therefore, the GPs may host such heavily obscured AGNs. Otherwise, no AGN exists and the MIR emission is ascribed to SF. Active SF in low-mass galaxies is indeed suggested to reproduce red MIR colors. This would imply that diagnostics based on MIR photometry data alone may misidentify such galaxies as AGNs.Comment: 12 pages, 3 tables, 5 figures, accepted for publication in Ap

    Sheet Dependence on Superconducting Gap in Oxygen-Deficient Iron-based Oxypnictide Superconductors NdFeAs0.85

    Full text link
    Photoemission spectroscopy with low-energy tunable photons on oxygen-deficient iron-based oxypnictide superconductors NdFeAsO0.85 (Tc=52K) reveals a distinct photon-energy dependence of the electronic structure near the Fermi level (EF). A clear shift of the leading-edge can be observed in the superconducting states with 9.5 eV photons, while a clear Fermi cutoff with little leading-edge shift can be observed with 6.0 eV photons. The results are indicative of the superconducting gap opening not on the hole-like ones around Gamma (0,0) point but on the electron-like sheets around M(pi,pi) point.Comment: 8 pages, 3 figure

    Defective cortex glia plasma membrane structure underlies light-induced epilepsy in cpes mutants

    Get PDF
    Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype

    Enzyme systems involved in glucosinolate metabolism in Companilactobacillus farciminis KB1089

    Get PDF
    Cruciferous vegetables are rich sources of glucosinolates (GSLs). GSLs are degraded into isothiocyanates, which are potent anticarcinogens, by human gut bacteria. However, the mechanisms and enzymes involved in gut bacteria-mediated GSL metabolism are currently unclear. This study aimed to elucidate the enzymes involved in GSL metabolism in lactic acid bacteria, a type of gut bacteria. Companilactobacillus farciminis KB1089 was selected as a lactic acid bacteria strain model that metabolizes sinigrin, which is a GSL, into allylisothiocyanate. The sinigrin-metabolizing activity of this strain is induced under glucose-absent and sinigrin-present conditions. A quantitative comparative proteomic analysis was conducted and a total of 20 proteins that were specifically expressed in the induced cells were identified. Three candidate proteins, β-glucoside-specific IIB, IIC, IIA phosphotransferase system (PTS) components (CfPttS), 6-phospho-β-glucosidase (CfPbgS) and a hypothetical protein (CfNukS), were suspected to be involved in sinigrin-metabolism and were thus investigated further. We hypothesize a pathway for sinigrin degradation, wherein sinigrin is taken up and phosphorylated by CfPttS, and subsequently, the phosphorylated entity is degraded by CfPbgS. As expression of both pttS and pbgS genes clearly gave Escherichia coli host strain sinigrin converting activity, these genes were suggested to be responsible for sinigrin degradation. Furthermore, heterologous expression analysis using Lactococcus lactis suggested that CfPttS was important for sinigrin degradation and CfPbgS degraded phosphorylated sinigrin
    corecore