262 research outputs found

    Immunohistochemical study for the expression of leukocyte adhesion molecules, and FGF23 and ACE2 in P. gingivalis LPS-induced diabetic nephropathy

    Get PDF
    Objective The present study aims to examine the expression of leukocyte adhesion molecules and renal metabolic factors in diabetic mouse kidneys with periodontal pathogen Pg-LPS-induced nephropathy. Background We recently reported that the glomerular endothelium expresses toll-like receptor (TLR)2 and TLR4 in diabetic environments and TLR2/4 ligand Porphyromonas (P.) gingivalis lipopolysaccharides (Pg-LPS) induce nephropathy in diabetic mice. It is thought that Pg-LPS promotes the chronic inflammation with the overexpression of leukocyte adhesion molecules and renal-specific metabolic enzymes by the recognition of Pg-LPS via TLR in the diabetic kidneys. There have been no reports of the effects of periodontopathic bacteria on the expression of leukocyte adhesion molecules and the accumulation of physiologically active substances in the kidney. Methods The immunohistochemical investigation was performed on diabetic mouse kidney with Pg-LPS-induced nephropathy with glomerulosclerosis in glomeruli. Results There were no vessels which expressed vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or fibroblast growth factor (FGF) 23 in streptozotocin (STZ)-induced diabetic ICR mice (STZ-ICR), or in healthy ICR mice administered Pg-LPS (LPS-ICR). However, in diabetic ICR mouse kidneys with Pg-LPS-induced nephropathy (LPS-STZ) the expression of VCAM-1 and the accumulation of FGF23 were observed in renal tubules and glomeruli, and the expression of E-selectin was observed in renal parenchyma and glomeruli. The angiotensin-converting enzyme 2 (ACE2) was detected in the proximal tubules but not in other regions of ICR, STZ-ICR, or LPS-ICR. In LPS-STZ ACE2 was detected both in renal tubules as well as in glomeruli. The Mac-1 and podoplanin-positive cells increased in the renal parenchyma with diabetic condition and there was the distribution of a large number of Mac-1-positive cells in LPS-STZ. Conclusions The Pg-LPS may induce diabetic renal inflammation such as glomerulosclerosis and tubulitis with infiltration of Mac-1/podoplanin positive macrophages via glomerular overexpression of VCAM-1 and E-selectin, resulting in accumulation of both ACE2 and FGF23 which were unmetabolized with the inflammation-induced kidney damage under the diabetic condition. Periodontitis may be a critical factor in the progress of nephropathy in diabetic patients

    In-orbit Demonstration of Reaction Control System for Orbital Altitude Change of Micro-Satellite ALE-2

    Get PDF
    This research presents the results of an in-orbit test of the orbital altitude control for a micro-satellite equipped with the first space-demonstrated high-density small cold gas jet thruster. In the field of micro-satellites, the application of thrusters to practical missions has not yet progressed due to their high cost, mechanical and electrical incompatibility with the satellite bus system, and increased operational risks. By contrast, the demand for orbit control functions has been increasing in recent years with the expansion of micro-satellite applications. The76kg satellite ALE-2 , which was jointly developed by Tohoku University and ALE Co., Ltd., has the world\u27s first challenging mission to artificially generate shooting stars by ejecting small substances (meteor source) from the ejection device fixed on the satellite body. To avoid collision of the ejected meteor source with other flying objects, the mission must be performed in a sun-synchronous orbit at an altitude of less than 400 km, which is lower than that of the International Space Station. However, it is required to maintain the mission orbit autonomously because the orbit decay is large due to the effect of atmospheric drag. In addition, to release the meteor source at an arbitrary orbital position, it is essential to manipulate the ground track by raising and lowering the orbital altitude. Therefore, ALE-2 needs to control the orbit altitude actively and with arbitrary amount of change. In this study, the reaction control system (RCS), which satisfies the orbit change capability, mission requirements, and compatibility with the satellite bus system, is installed on ALE-2 to perform space demonstrations of orbit control and to evaluate the operational performance of the thruster. ALE-2 will be the first to be equipped with a cold gas jet thruster developed by Patched conics, LLC. It is estimated that the thruster is capable of changing altitude more than 1 km by continuous drive for one orbital period. Using this RCS, the following three criteria were set as the evaluation criteria: (Minimum) the orbit altitude can be actively changed by the thruster, (Full) the orbit altitude can be controlled by an arbitrary amount of operation and can be increased more than 1 km per orbit, and (Extra) the mission orbit can be transferred according to the meteor source release plan. ALE-2 was launched on December 6, 2019, and the in-orbit test of the RCS started four months later. Although the RCS was not able to achieve its initial orbit change capability due to an anomaly in the power supply system, various kinds of tests were conducted under conditions that allowed continuous thruster operation. It was confirmed that the orbit altitude was increased by 0.4 km per orbit. In addition, the fault detection, isolation and recovery (FDIR)function was effectively performed against any kinds of anomalies of RCS during in-orbit operation. Therefore, a sustained orbital altitude of 400 km was expected to be achievable using the onboard RCS

    Electron Microscopic Studies of the Differentiation of Fat Cells in Human Fetal Skin**From the Department of Dermatology, Yamaguchi University, School of Medicine, Ube, Japan.

    Get PDF
    ABSTRACT1)Electron microscopic studies of primitive fat organs showing various degrees of fat storage from human fetuses 20 to 26 weeks of age were undertaken, with special reference to the origin of fat cells and the lipid formations in them. Based on this study, three types of cells, namely an undifferentiated-type cell, a young-type fat cell and a mature-type fat cell were discerned ultrastructurally, but they are considered to be identical concerning the morphology of mitochondria, smooth endoplasmic reticula and glycogen granules.2)Concerning the origin of white fat cells, it was revealed that young-type and mature-type fat cells are not derived from reticuloendothelial cells or fibroblasts but from a certain definite type of mesenchymal cell which we have referred to as the undifferentiated-type cell.3)The finding that cytoplasmic microvesicles are more prominent in young-type fat cells than in mature-type ones might be interpreted that the young-type cells may be actively releasing lipids or free fatty acids according to Williamson's concept of these organelles. But, contrary to Williamson's postulation, the young-type fat cells seem to be accumulating lipids or free fatty acids

    Image Correction Methods for Regions of Interest of Cirrhosis Liver Classification on CNNs

    Get PDF
    The average error rate in liver cirrhosis classification on B-mode ultrasound images using the traditional pattern recognition approach is still too high. In order to improve the liver cirrhosis classification performance, image correction methods and a convolution neural network (CNN) approach are focused on. The impact of image correction methods on region of interest (ROI) images that are input into the CNN for the purpose of classifying liver cirrhosis based on data from B-mode ultrasound images is investigated. In this paper, image correction methods based on tone curves are developed. The experimental results show positive benefits from the image correction methods by improving the image quality of ROI images. By enhancing the image contrast of ROI images, the image quality improves and thus the generalization ability of the CNN also improves

    Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy.

    Get PDF
    Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms

    Forensic casework of personal identification using a mixture of body fluids from more than one person by Y-STRs analysis

    Get PDF
    We applied Y-STRs (DYS385/DYS19/YCAII) to an adhesive plaster left at a crime scene. This plaster may have included body fluids from more than one person. Firstly, we performed preliminary examinations, ABO-blood type examinations, and commonly used DNA examinations (D1S80, HLADQα, TH01, and PM) on these specimens. As a result of these examinations, we could evidence that suspect A did not contacted with the plaster, but could not confirm the presence of perspiration from suspect B. As the next step, we applied Y-STR examination to the plaster. Using this examination, we detected alleles that coincided to those of suspect B. We also concluded that the fluid from an unidentified person was vaginal fluid based on crime scene investigation. Y-STRs examination data obtained from 124 persons in Tokushima prefecture showed that 1.613% of individuals demonstrated haplotypes 10-18/ 15/19-23, which was detected from the plaster and from suspect B. Therefore, we considered that there was a high probability that the persiration detected in the plaster was that of suspect B. Based on these studies, we concluded that Y-STR examination of trace evidence was very useful to screen suspects using materials that contained body fluid from more than one person

    A versatile and robust cell purification system with an RNA-only circuit composed of microRNA-responsive ON and OFF switches

    Get PDF
    2つの合成mRNAスイッチを活用した純度の高い細胞選別システムの開発. 京都大学プレスリリース. 2022-01-06.Synthetic gene circuits that improve stem cell quality. 京都大学プレスリリース. 2022-01-06.Human induced pluripotent stem cells (iPSCs) are promising cell resources for cell therapy and drug discovery. However, iPSC-derived differentiated cells are often heterogenous and need purification using a flow cytometer, which has high cost and time consumption for large-scale purification. MicroRNAs (miRNAs) can be used as cell selection markers, because their activity differs between cell types. Here, we show miRNA-responsive ON and OFF switch mRNAs for robust cell purification. The ON switch contains a miRNA-target sequence after the polyadenylate tail, triggering translational activation by sensing the target miRNA. By designing RNA-only circuits with miRNA-ON and -OFF switch mRNAs that encode a lethal ribonuclease, Barnase, and its inhibitor, Barstar, we efficiently purified specific cell types, including human iPSCs and differentiated cardiomyocytes, without flow cytometry. Synthetic mRNA circuits composed of ON and OFF switches provide a safe, versatile, and time-saving method to purify various cell types for biological and clinical applications
    corecore