Small Satellite Conference August 7-12, 2021 Utah State University, Logan, Utah, USA (Online) Weekday Technical Sessions, Year in Review

SSC21-III-09

In-orbit Demonstration of Reaction Control System for Orbital Altitude Change of Micro-Satellite ALE-2

O<u>Yuji Sato</u>, Shinya Fujita, Yoshihiko Shibuya, Toshinori Kuwahara Department of Aerospace Engineering, Tohoku University, Japan

> Koh Kamachi ALE Co., Ltd., Japan

ALE Project – Generation of Man-made Meteors by Micro-satellites

1st Satellite "ALE-1": Launched on Jan. 18, 2019 2nd Satellite "ALE-2": Launched on Dec. 6, 2019

Current status : Malfunction in the mission equipment

SSC21-III-09

ALE Co., Ltd.

Micro-satellite ALE-2 (Launched on Dec. 6, 2019)

Mission Goal – Painting the sky with the science of shooting stars.

- d Orbit Control System (AOCS)
- Requirement of Attitude and Orbit Control System (AOCS) for ALE-2 mission
 - Fine Attitude Control : The <u>control accuracy</u> of the meteor pellet release direction must be <u>within 1.4°</u> for safe and reliable mission.
 - Active Orbit Control : To <u>extend the orbital lifetime</u> against atmospheric drag, and <u>to adjust the position and timing</u> of the meteor release by changing the orbital altitude.

2. Research Objectives

- Requirements for Reaction Control System (RCS)
 - 1 To extend <u>the orbital lifetime</u> for approx. **one year or more** by maintaining the orbital altitude (mission orbit of 375–400 km).
 - 2 To select <u>a specific location and timing to perform a shooting star event</u> in a cycle of less than 30 days by shifting the satellite passing area.
 - The orbital altitude needs to be manipulated up or down to change to a specific orbital period.
 - ③ The system should be able to be <u>additionally installed to the existing bus</u> <u>system</u> which has been used for ALE-1 satellite.

Research Objectives

- To <u>design a bus-system</u> with RCS for ALE-2 mission that meets the above mission requirements.
- To <u>demonstrate in orbit</u> that ALE-2 is capable of changing its altitude by more than 1 km per orbit. → Apply to practical mission operations.

Development Policy

- An RCS of cold gas jet type with total impulse of 1400 Ns and wet mass of 9.3 kg is adopted.
 - The product was developed by Patchedconics, LLC, a Japanese venture company. For more detail, please check the poster session (Propulsion):

"Heater-Free, Lowest Power Consumption & Highest Volume Availability Gas-Generator Propulsion System - Most Suitable for Micro to Nano Satellites"

Tiago Padovan, Junichiro Kawaguchi - Patchedconics, LLC

- This is the first opportunity for space demonstration.
- The hardware, software, and control operation plan for the RCS onboard ALE-2 is newly designed.
 - Simple and reliable control logic: with off-pulse control of the four thrusters to generate thrust while balancing reaction torque.
 - Software-based FDIR (Fault Detection, Isolation and Recovery) function, thereby improving operational safety and system reliability.

Outline

- 1. Introduction
- 2. Research Objectives
- 3. System Design
- 4. In-orbit Demonstration
- 5. Lessons Learned
- 6. Conclusion

ALE-1

ALE-2

ALE-2 Specification

Launch Date	December 6, 2019		
Launch Vehicle	Electron, Rocket Lab		
Mass	76 kg		
Size	W 555.7 x D 656.2 x H 707.0 mm		
Orbit	Sun-synchronous orbit at 400 km		

ALE-1 Specification

Launch Date	January 18, 2019
Launch Vehicle	Epsilon, JAXA
Mass	68 kg
Size	W 570.0 x D 550.0 x H 720.0 mm
Orbit	Sun-synchronous orbit at 500 km

ALE-2 Satellite Bus-system

Side View

Thruster Module Specification					
Model Number	HDCGJ Model-C50C				
Size	485 × 485 mm				
Weight	7.3 kg (dry), 9.3 kg (wet)				
Propellant	R600a (2 kg)				
Number of nozzles	4				
Thrust	3 mN (each nozzle, typ.)				
lsp	70 s				
Total Impulse	1400 Ns				
Nozzle arrangement	See the left figure				
Operation Temperature	0–60 °C				
Power consumption	10–24 W				
Communication Type	UART (RS-422)				

$$\boldsymbol{\tau}_{i} = \boldsymbol{r}_{i} \times \boldsymbol{f}_{i} \qquad \begin{array}{c} \boldsymbol{r}_{i}: \text{nozzle arm vector [mm]} \\ \boldsymbol{f}_{i}: \text{thrust vector [mN]} \\ \boldsymbol{r}_{1} = \begin{bmatrix} 281.36 \\ -234.67 \\ -274.77 \end{bmatrix}, \boldsymbol{r}_{2} = \begin{bmatrix} 281.36 \\ -234.67 \\ 276.53 \end{bmatrix}, \boldsymbol{r}_{3} = \begin{bmatrix} 281.36 \\ 102.33 \\ -274.77 \end{bmatrix}, \boldsymbol{r}_{4} = \begin{bmatrix} 281.36 \\ 102.33 \\ 276.53 \end{bmatrix} \\ \boldsymbol{f}_{1} = \boldsymbol{f}_{2} = \begin{bmatrix} -3\cos 15^{\circ} \\ 0 \\ -3\sin 15^{\circ} \end{bmatrix}, \boldsymbol{f}_{3} = \boldsymbol{f}_{4} = \begin{bmatrix} -3\cos 15^{\circ} \\ 0 \\ 3\sin 15^{\circ} \end{bmatrix}$$

SSC21-III-09

Strategy of Orbit Control for ALE-2 Mission (1/2)

<u>Step 1</u> Attitude control to follow flight (along-track) direction Max. Thrust Force Step 2 Generate max. thrust to defeat atmospheric drag

Atmospheric

Drag

Back to Step 1 to cancel imbalanced reaction torque

Return to appropriate orbit (higher altitude)

Estimated delta V (energy for altitude ascension in 1 orbital cycle around the Earth)

Change in momentum (Impulse) : $F\Delta t = m\Delta V$

With consideration of energy loss by imbalanced torque compensation, Max. thrust force F = 8.32 mN

Assuming that weight m = 75 kg, Δt = 5553.6 s,

Generated $\Delta V = 0.616 \text{ m/s}$

Strategy of Orbit Control for ALE-2 Mission (2/2)

Application 1: Orbit altitude maintenance

- Continuous thruster operation for **one orbital cycle**
- Required ΔV = 0.566 m/s for 1 km orbital ascension (assuming 400-km orbit, 100% thrust efficiency)
- The RCS operation should be conducted every 10 days, extending the orbital lifetime by **11 months**.

Application 2: Shift of satellite passing area

- Ground track moves about 2600 km per orbit. (Alt. = 400km)
- When ΔV = 2.634 m/s (equivalent to propulsion control for 4.3 orbital cycles) is given, it is possible to make a change of 1300 km after 32 days.
- We can select a specific point and hold a shooting star event within approx. 30 days.

→ RCS design and its performance are compatible with both bus system design and mission requirement.

ALE Co., Ltd.

Control Software

- Algorithm of thruster control
 - i. Calculate <u>target thrust torque T_t by PID control law</u>
 - ii. Apply a Schmitt trigger with the hysteresis and the dead-band threshold to determine the sign of target thrust torque T_t
 - iii. Determine <u>the nozzle on-off combination</u> based on thruster nozzle selection table
 - iv. Generate valve on-off switching pulse using a PWPF modulator

* PWPF = Pulse-width pulse-frequency

Running at 10Hz

Continue

Fault Detection, Isolation and Recovery (FDIR) function

Main thruster control process No **Spin Rate** < 0.6°/s and not 0 Cnt1++ No Cnt1 Α Cnt1 = 0Yes < 1[s] Thruster: All Valves CLOSE Yes No 2 s wait Angular Acceleration Cnt2++ < 0.5°/s² and not 0 Thruster: Gas Generation OFF No Cnt2 Α Cnt2 = 0 Yes < 1[s] Yes 2 s wait Receive No Thruster: All heaters OFF **Housekeeping data** Cnt3++ No Cnt3 Α Yes 60 s wait Cnt3 = 0 < 1[s] Yes No Thruster: Power Supply OFF **Attitude Error** Cnt4++ < 10° No Cnt4 Α Yes Cnt4 = 0< 1[s] Yes

Fault Isolation / Recovery

Fault Detection

- Closed-loop Control Simulation
 - Hardware-In-the-Loop Simulation (HILS) system
 - To evaluate both on-board software logic and OBC physical interface

Outline

- 1. Introduction
- 2. Research Objectives
- 3. System Design
- 4. In-orbit Demonstration
- 5. Lessons Learned
- 6. Conclusion

Measurement of Thruster Operational Performance

Thrust vs. Tank Pressure

Torque imbalance

- Indirect measurement from changes in spinning behavior during thrust
- Clarify the relationship between
 buffer tank pressure and output thrust
- Indirect measurement from changes in momentum stored in reaction wheels
- Recognize a large gap between THV-3/4 (24–35% stronger for THV-4)

Altitude Ascending Operation (1/4)

- Attitude stabilization (8 min.) , followed by orbital ascending control (35 min.)
- High thrust level: larger than 5.85N
- Half-orbit, Sunshine area (operational limits, explained later)

Operation Condition					
Operation time	21:32:00 UTC, Nov. 16, 2020				
Operation sequence	21:32:00 UTC: (-0:08:00)				
	Start preliminary attitude control				
	21:40:00 UTC: (+0:00:00)				
	Switch to orbital ascending control				
	22:15:00 UTC: (+0:35:00)				
	Stop thruster control				
	All sequence is conducted at sunshine.				
Thruster gas control	Enabled, within 0.223–0240 MPaG				
Thrust level	Approximately 5.85 mN in each nozzle				
Thruster control	10 Hz interval				
cycle					
Thruster control	Kp = { 5000, 5000, 5000 }				
gain (X,Y,Z)	Kd = { 300000, 300000, 300000 }				
	Ki = { 0, 0, 0 }				
	Kf = { 2160, 2110, 2120 }				
Thruster control	Uon (+) = { +200, +200, +200 }				
dead band	Uoff (+) = { +50, +50, +50 }				
threshold (X,Y,Z)	Uon (-) = { -200, -200, -200 }				
	Uoff (-) = { -50, -50, -50 }				

Altitude Ascending Operation (2/4)

Attitude Angle

Spin Rate

Attitude was properly controlled, resulting in large delta V and high stability.

Altitude Ascending Operation (3/4)

RCS Housekeeping data

Tank Temperature

Valve Open/Close Frequency

Tank Pressure

Altitude Ascending Operation (4/4)

Altitude Change

#	Date	Thrust	Operation	Altitude	Effici-
			Time	Change	ency
(1)	Oct. 19, 2020	2.1 mN	22.5 min.	+156 m	85.5%
(2)	Oct. 21, 2020	2.1 mN	45 min.	+282 m	76.9%
(3)	Oct. 29, 2020	2.1 mN	45 min.	+294 m	80.3%
(4)	Nov. 4, 2020	3.75 mN	45 min.	+368 m	56.2%
(5)	Nov. 16, 2020	5.85 mN	35 min.	+442 m	55.7%

5. Lessons Learned

Lessons Learned – Abnormal stoppage of RCS

Insufficient electrical tests in ground

X DC/DC has caused serious trouble in orbit.

Anomalies

- RCS power failure during eclipse area
- RCS logic circuit operation stop when the load on the power supply is too large (high switching frequency of valves)

Cause

- When the battery voltage is below 12V or the repetitive inrush current occurs, the boost circuit by DC/DC converter may not work.
- Could not identify it due to lack of ground tests.

Countermeasures and Effect

- Limit the use of RCS: only sunshine area, low switching frequency → Change of operation sequence
- Although the total ΔV decreased, stable control was established.

5. Lessons Learned

- Lessons Learned Application of FDIR function
 - Operates properly and protests the RCS from various anomalies

Anomalous Status Monitoring

- A) Anomalous gyro sensor values
- B) Increase in attitude determination error (approx. >5°)
- C) Rapid increase in angular velocity (approx. >2°/s)
- D) Interruption of Housekeeping data from RCS electric board
- E) Activation of watch dog timer of OBC
- F) Activation of circuit breakers

Isolation & Recovery

RCS Shut-down Process

- Valve all closed
- Gas generation stopped
- Heater stopped
- Interruption of thruster main power supply

SSC21-III-09

6. Conclusion

Achievement

- In order to solve the problem of the power supply system of the RCS, we devised the operation sequence and changed the parameters appropriately. As a result, we succeeded in adding an orbit altitude change of up to ±0.4 km by continuously maneuver halfway around the orbit in the daylight area.
- Although the number of orbits using thrusters was increased, the original objectives of extending the orbit life by approx. one year and adjusting the satellite pass position by ± 1300 km were expected to be feasible.
- The FDIR function worked effectively against repeated failures during operation, ensuring a high level of operational safety.

Future Perspectives

- Continue to perform the orbit maintenance control hoping for the recovery of the meteor ejection system
- Utilize the operational data for further improvement of RCS performance
- Proceed to design the next satellite