80 research outputs found

    経動脈的化学塞栓術における予防的抗菌薬と肝膿瘍発症の関連 : 後方視的コホート研究

    Get PDF
    Objectives: Clinical evidence on prophylactic antibiotics for transarterial chemoembolization (TACE) to prevent liver abscess is limited because liver abscess is a rare event. This study aimed to analyse the association between prophylactic antibiotic use for TACE and the occurrence of liver abscess after TACE. Methods: Using the nationwide Diagnosis Procedure Combination database in Japan, we retrospectively identified patients who underwent TACE for hepatic cancer between July 2010 and March 2017. The primary outcome was liver abscess requiring procedural intervention within 30 days of TACE. Secondary outcomes included 30-day in-hospital mortality and length of stay. Propensity score matching was performed to adjust for potential confounding factors and compare outcomes between patients with and without prophylactic antibiotics. Results: Among 167 544 eligible patients, 134 712 received antibiotics and 32 832 did not. In the matched cohort of 29 211 pairs, the proportion of patients with liver abscess requiring procedural intervention was significantly lower in the antibiotics group than in the no-antibiotics group (0.08% vs. 0.22%, p 0.001; relative risk (95% confidence interval), 0.35 (0.22-0.57); absolute risk reduction, 0.0014 (0.0008-0.0021); and number needed to treat, 696 (476-1223)). There was no significant difference in 30-day in-hospital mortality between the groups. The length of stay was longer in the antibiotics group than in the no-antibiotics group (median, 10 vs. 9 days, p < 0.001). Conclusions: Prophylactic antibiotic use in patients undergoing TACE was associated with a reduced occurrence of liver abscess requiring procedural intervention.博士(医学)・甲第794号・令和3年6月25日Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved

    Global Gene Expression Profiling in PPAR-γ Agonist-Treated Kidneys in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease

    Get PDF
    Kidneys are enlarged by aberrant proliferation of tubule epithelial cells leading to the formation of numerous cysts, nephron loss, and interstitial fibrosis in polycystic kidney disease (PKD). Pioglitazone (PIO), a PPAR-γ agonist, decreased cell proliferation, interstitial fibrosis, and inflammation, and ameliorated PKD progression in PCK rats (Am. J. Physiol.-Renal, 2011). To explore genetic mechanisms involved, changes in global gene expression were analyzed. By Gene Set Enrichment Analysis of 30655 genes, 13 of the top 20 downregulated gene ontology biological process gene sets and six of the top 20 curated gene set canonical pathways identified to be downregulated by PIOtreatment were related to cell cycle and proliferation, including EGF, PDGF and JNK pathways. Their relevant pathways were identified using the Kyoto Encyclopedia of Gene and Genomes database. Stearoyl-coenzyme A desaturase 1 is a key enzyme in fatty acid metabolism found in the top 5 genes downregulated by PIO treatment. Immunohistochemical analysis revealed that the gene product of this enzyme was highly expressed in PCK kidneys and decreased by PIO. These data show that PIO alters the expression of genes involved in cell cycle progression, cell proliferation, and fatty acid metabolism

    Clinical Outcomes and Genetic Analyses of Restrictive Cardiomyopathy in Children

    Full text link
    BACKGROUND: Restrictive cardiomyopathy in children is rare and outcomes are very poor. However, little information is available concerning genotype-outcome correlations. METHODS: We analyzed the clinical characteristics and genetic testing, including whole exome sequencing, of 28 pediatric restrictive cardiomyopathy patients who were diagnosed from 1998 to 2021 at Osaka University Hospital in Japan. RESULTS: The median age at diagnosis (interquartile range) was 6 (2.25-8.5) years. Eighteen patients received heart transplantations and 5 patients were on the waiting list. One patient died while waiting for transplantation. Pathologic or likely-pathogenic variants were identified in 14 of the 28 (50%) patients, including heterozygous TNNI3 missense variants in 8 patients. TNNT2, MYL2, and FLNC missense variants were also identified. No significant differences in clinical manifestations and hemodynamic parameters between positive and negative pathogenic variants were detected. However, 2- and 5-year survival rates were significantly lower in patients with pathogenic variants (50% and 22%) compared with survival in patients without pathogenic variants (62% and 54%; P=0.0496, log-rank test). No significant differences were detected in the ratio of patients diagnosed at nationwide school heart disease screening program between positive and negative pathogenic variants. Patients diagnosed by school screening showed better transplant-free survival compared with patients diagnosed by heart failure symptoms (P=0.0027 in log-rank test). CONCLUSIONS: In this study, 50% of pediatric restrictive cardiomyopathy patients had pathogenic or likely-pathogenic gene variants, and TNNI3 missense variants were the most frequent. Patients with pathogenic variants showed significantly lower transplant-free survival compared with patients without pathogenic variants.Ishida H., Narita J., Ishii R., et al. Clinical Outcomes and Genetic Analyses of Restrictive Cardiomyopathy in Children. Circulation: Genomic and Precision Medicine 16, 382 (2023); https://doi.org/10.1161/CIRCGEN.122.004054

    Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. METHODS AND RESULTS: Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, ap-optosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several hu-moral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. CONCLUSIONS: Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell–cell contact.Tsuru H., Yoshihara C., Suginobe H., et al. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. Journal of the American Heart Association 12, e029676 (2023); https://doi.org/10.1161/JAHA.123.029676

    Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation

    Get PDF
    Accumulating evidence suggests that glutathione loss is closely associated with the progression of neurodegenerative disorders. Here, we found that the neuronal conditional-knockout (KO) of glutamyl-cysteine-ligase catalytic-subunit (GCLC), a rate-limiting enzyme for glutathione synthesis, induced brain atrophy accompanied by neuronal loss and neuroinflammation. GCLC-KO mice showed activation of C1q, which triggers engulfment of neurons by microglia, and disease-associated-microglia (DAM), suggesting that activation of microglia is linked to the neuronal loss. Furthermore, gasdermins, which regulate inflammatory form of cell death, were upregulated in the brains of GCLC-KO mice, suggesting the contribution of pyroptosis to neuronal cell death in these animals. In particular, GSDME-deficiency significantly attenuated the hippocampal atrophy and changed levels of DAM markers in GCLC-KO mice. Finally, we found that the expression of GCLC was decreased around amyloid plaques in AppNL-G-F AD model mice. AppNL-G-F mouse also exhibited inflammatory events similar to GCLC-KO mouse. We propose a mechanism by which a vicious cycle of oxidative stress and neuroinflammation enhances neurodegenerative processes. Furthermore, GCLC-KO mouse will serve as a useful tool to investigate the molecular mechanisms underlying neurodegeneration and in the development of new treatment strategies to address neurodegenerative diseases

    Double photon emission coincidence imaging with GAGG-SiPM Compton camera

    Get PDF
    Compton imaging is a promising gamma-ray imaging method based on the Compton scattering kinematics due to high Compton scattering probability for sub-MeV to MeV gamma-rays. A conventional Compton camera has a disadvantage of low signal-to-background ratio (SBR), which is caused by drawing of multiple Compton cones. A method to solve this fundamental problem is the double-photon emission computed tomography (DPECT), which uses the coincidence detection for cascade gamma-rays and significantly increases the SBR using intersections of two Compton cones. In this study, we demonstrated the DPECT method by using 134Cs radio isotope, which is one of important radioisotopes for the imaging of fuel debris, with two Ce:Gd(Al,Ga)O12 (GAGG) scintillator Compton cameras

    急速に増大する腫瘤影を呈した肺Mycobacterium avium症の1例

    Get PDF
    症例は66歳,男性.慢性閉塞性肺疾患とい草塵肺で経過観察をしていた.6カ月前の胸部CTでは明らかな異常を認めなかったが,新たに左上葉の気腫性病変周囲に腫瘤性病変を認めた.気管支鏡検査にて,局所検体からM.avium が検出されたものの生検で肉芽腫病変を認めなかったため,CTガイド下肺生検を実施した結果,肺MAC症と最終診断した.近年,孤立性腫瘤形成型肺MAC症の症例を散見するようになってきているが,本症例のごとく短期間で急速に増大することもあることから,抗酸菌を含めた肺感染症に対する積極的な検査が必要と思われる.A 66-year-old man was admitted to our hospital for follow-up on chronic obstructive pulmonary disease with a recent-showing abnormal chest shadow. He had received a periodic chest computed tomography (CT) six months prior due to a past history of COPD and Igusa pneumoconiosis. Although there was no mass shadow on the chest CT six months ago, a solitary tumorous shadow appeared surrounding the emphysematous lesions in the left upper lobe. M. avium was detected from local specimens viabronchoscopic examination, but because a granulomatous lesion was not observed, we performed a CT-guided lung biopsy and made a final diagnosis of pulmonary MAC disease. We recently observed that pulmonary MAC disease presents as a solitary tumorous shadow. However, as there are cases of pulmonary MAC disease presenting as a rapidly growing tumorous shadow within a short time, it is necessary to perform aggressive examinations for infectious diseases including an acid-fast bacilli examination

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
    corecore