157,697 research outputs found

    Unfreezing Casimir invariants: singular perturbations giving rise to forbidden instabilities

    Full text link
    The infinite-dimensional mechanics of fluids and plasmas can be formulated as "noncanonical" Hamiltonian systems on a phase space of Eulerian variables. Singularities of the Poisson bracket operator produce singular Casimir elements that foliate the phase space, imposing topological constraints on the dynamics. Here we proffer a physical interpretation of Casimir elements as \emph{adiabatic invariants} ---upon coarse graining microscopic angle variables, we obtain a macroscopic hierarchy on which the separated action variables become adiabatic invariants. On reflection, a Casimir element may be \emph{unfrozen} by recovering a corresponding angle variable; such an increase in the number of degrees of freedom is, then, formulated as a \emph{singular perturbation}. As an example, we propose a canonization of the resonant-singularity of the Poisson bracket operator of the linearized magnetohydrodynamics equations, by which the ideal obstacle (resonant Casimir element) constraining the dynamics is unfrozen, giving rise to a tearing-mode instability

    General Rule and Materials Design of Negative Effective U System for High-T_c Superconductivity

    Full text link
    Based on the microscopic mechanisms of (1) charge-excitation-induced negative effective U in s^1 or d^9 electronic configurations, and (2) exchange-correlation-induced negative effective U in d^4 or d^6 electronic configurations, we propose a general rule and materials design of negative effective U system in itinerant (ionic and metallic) system for the realization of high-T_c superconductors. We design a T_c-enhancing layer (or clusters) of charge-excitation-induced negative effective UU connecting the superconducting layers for the realistic systems.Comment: 11 pages, 1 figures, 2 tables, APEX in printin

    Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

    Full text link
    Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it. In this paper, we show that similar results hold for constant-time approximation algorithms in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we construct an oracle that serves an access, in constant time, to a nearly optimal solution to a basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii) Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All of those results are \textit{unconditional}. Therefore, for every bounded-degree CSP, we give the best constant-time approximation algorithm among all. A CSP instance is called ϵ\epsilon-far from satisfiability if we must remove at least an ϵ\epsilon-fraction of constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm that distinguishes satisfiable instances from ϵ\epsilon-far instances with probability at least 2/32/3. Using the results above, we also derive, under a technical assumption, an equivalent condition under which a CSP is testable in the bounded-degree model

    Testing List H-Homomorphisms

    Full text link
    Let HH be an undirected graph. In the List HH-Homomorphism Problem, given an undirected graph GG with a list constraint L(v)V(H)L(v) \subseteq V(H) for each variable vV(G)v \in V(G), the objective is to find a list HH-homomorphism f:V(G)V(H)f:V(G) \to V(H), that is, f(v)L(v)f(v) \in L(v) for every vV(G)v \in V(G) and (f(u),f(v))E(H)(f(u),f(v)) \in E(H) whenever (u,v)E(G)(u,v) \in E(G). We consider the following problem: given a map f:V(G)V(H)f:V(G) \to V(H) as an oracle access, the objective is to decide with high probability whether ff is a list HH-homomorphism or \textit{far} from any list HH-homomorphisms. The efficiency of an algorithm is measured by the number of accesses to ff. In this paper, we classify graphs HH with respect to the query complexity for testing list HH-homomorphisms and show the following trichotomy holds: (i) List HH-homomorphisms are testable with a constant number of queries if and only if HH is a reflexive complete graph or an irreflexive complete bipartite graph. (ii) List HH-homomorphisms are testable with a sublinear number of queries if and only if HH is a bi-arc graph. (iii) Testing list HH-homomorphisms requires a linear number of queries if HH is not a bi-arc graph
    corecore