Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's
Unique Games Conjecture (STOC 2002) is true, then for every constraint
satisfaction problem (CSP), the best approximation ratio is attained by a
certain simple semidefinite programming and a rounding scheme for it. In this
paper, we show that similar results hold for constant-time approximation
algorithms in the bounded-degree model. Specifically, we present the
followings: (i) For every CSP, we construct an oracle that serves an access, in
constant time, to a nearly optimal solution to a basic LP relaxation of the
CSP. (ii) Using the oracle, we give a constant-time rounding scheme that
achieves an approximation ratio coincident with the integrality gap of the
basic LP. (iii) Finally, we give a generic conversion from integrality gaps of
basic LPs to hardness results. All of those results are \textit{unconditional}.
Therefore, for every bounded-degree CSP, we give the best constant-time
approximation algorithm among all. A CSP instance is called ϵ-far from
satisfiability if we must remove at least an ϵ-fraction of constraints
to make it satisfiable. A CSP is called testable if there is a constant-time
algorithm that distinguishes satisfiable instances from ϵ-far
instances with probability at least 2/3. Using the results above, we also
derive, under a technical assumption, an equivalent condition under which a CSP
is testable in the bounded-degree model