530 research outputs found

    Simple Assessing of Calcification Catalyzed by Thermophilic Bacteria

    Get PDF
    Several bacterial species have been found to involve the biomineralization phenomenon promoted by them. The formation of calcium carbonate mineral (calcification) is most abundant phenomena as biomineralization by bacteria. Here we introduce the simple assessing method of calcification catalyzed by thermophilic bacteria. To obtain the fresh biomass of thermophilic bacterium, the thermophilic bacteria was cultured on conventional nutrient agar medium at 60˚C. Fresh biomass of bacteria is simply placed on calcite promoting hydrogel surface, and incubated at 60˚C. After incubation for 24 to 72 h, a number of single crystals can be found in the biomass. This method provides simple assessing for screening of calcification upon thermophilic bacteria

    生命維持にかかわる生理現象を介した人間 : ロボットのコミュニケーションと身体情動モデルの設計

    Get PDF
    関西大学In this dissertation, we focus on physiological phenomena of robots as the expressive modality of their inner states and discuss the effectiveness of a robot expressing physiological phenomena, which are indispensable for living. We designed a body-emotion model showing the relationship between a) emotion as the inner state of the robot and b) physiological phenomena as physical changes, and we discuss the communication between humans and robots through involuntary physiological expression based on the model. In recent years, various robots for use in mental health care and communication support in medical/nursing care have been developed. The purpose of these systems is to enable communication between a robot and patients by an active approach of the robot through sound and body movement. In contrast to conventional approaches, our research is based on involuntary emotional expression through physiological phenomena of the robot. Physiological phenomena including breathing, heartbeat, and body temperature are essential functions for life activities, and these are closely related to the inner state of humans because physiological phenomena are caused by the emotional reaction of the limbic system transmitted via the autonomic nervous system. In human-robot communication through physical contact, we consider that physiological phenomena are one of the most important nonverbal modalities of the inner state as involuntary expressions. First, we focused on the robots\u27 expression of physiological phenomena, proposed the body-emotion model (BEM), which concerns the relationship between the inner state of robots and their involuntary physical reactions. We proposed a stuffed-toy robot system: BREAR―which has a mechanical structure to express the breathing, heartbeat, temperature and bodily movement. The result of experiment showed that a heartbeat, breathing and body temperature can express the robot\u27s living state and that the breathing speed is highly related to the robot\u27s emotion of arousal. We reviewed the experimental results and emotional generation mechanisms and discussed the design of the robot based on BEM. Based on our verification results, we determined that the design of the BEM-which involves the perception of the external situation, the matching with the memory, the change of the autonomic nervous parameter and the representation of the physiological phenomena - that is based on the relationship between the autonomic nervous system and emotional arousal is effective. Second, we discussed indirect communication between humans and robots through physiological phenomena - which consist of the breathing, heartbeats and body temperature - that express robots\u27 emotions. We set a situation with joint attention from the robot and user on emotional content and evaluated whether both the user\u27s emotional response to the content and the user\u27s impression of relationship between the user and the robot were changed by the physiological expressions of the robot. The results suggest that the physiological expression of the robot makes the user\u27s own emotions in the experience more excited or suppressed and that the robot\u27s expression increases impressions of closeness and sensitivity. Last, we discussed the future perspective of human-robot communication by physiological phenomena. Regarding the representation of the robots\u27 sense of life, it is thought that the user\u27s recognition that the robot is alive improves not only the moral effect on the understanding of the finiteness of life but also the attachment to the robot in long-term communication. Regarding the emotional expression mechanism based on life, it is expected that the robot can display a complicated internal state close to that of humans by combining intentionally expressed emotions and involuntary emotional expressions. If a robot can express a combination of realistic voluntary expressions, such as facial expressions and body movements, in combination with real involuntary expressions by using the real intentions and lying, it can be said that the robot has a more complicated internal state than that of a pet. By using a robot expressing a living state through physiological phenomena, it can be expected that the effect of mental care will exceed that of animal therapy, and we expect to provide care and welfare support in place of human beings

    Petrified Geobacillus thermoglucosidasius colony to strontianite

    Get PDF
    When biomass of the thermophilic bacteria Geobacillus thermoglucosidasius is brought into contact with a hydrogel containing sodium acetate and strontium, the biomass petrifies and hardens, becoming a mineralized thin film after incubation at 60˚C for 72 h. Analysis by energy dispersive X-ray and X-ray diffraction shows that the mineralized thin film is strontianite. This is the first report of biomass completely changing to strontianite. Strontianite of thermophilic bacterial origin may be formed in the hydrothermal oligotrophic environment of the deep subsurface. DOI: http://dx.doi.org/10.5281/zenodo.114670

    Anomalous V2 of the left pulmonary vein detected using three-dimensional computed tomography in a patient with lung cancer : A case report

    Get PDF
    We report one of the rare anatomical variations of the pulmonary vein wherein the left V2 drained into the inferior pulmonary vein. A 63-year-old man was referred to our hospital because of an abnormal shadow in the left lower lung field that was noted on chest X-ray. Computed tomography (CT) revealed a tumor in the left lower lobe. A biopsied tumor specimen was diagnosed as an adenocarcinoma, and thus, left lower lobectomy was performed. Preoperative three-dimensional CT revealed that an anomalous V2 of the left lung drained from the superior segment into the inferior pulmonary vein. This variation type was confirmed during thoracoscopic left lower lobectomy. We were able to perform left lower lobectomy with the preservation of the anomalous V2. The postoperative course was uneventful, and the patient was discharged on postoperative day 12. It is important to identify anatomical variations of the pulmonary vein and reliably preserve and process the affected area to prevent postoperative complications

    Quantum vortex identification method and its application to Gross-Pitaevskii simulation

    Full text link
    A method to identify a quantum vortex in a three-dimensional Gross-Pitaevskii simulation has been developed. A quantum vortex was identified by the use of eigenvalues and eigenvectors of the Hessian of the mass density, together with a condition to distinguish a point to constitute a swirling vortex from other confusing data points. This method has been verified to identify vortex axes in a Gross-Pitaevskii simulation appropriately, being useful to elucidate various statistics associated with turbulent quantum vortices. This method provides us with a unified approach to studying vortex statistics in the turbulence of both classic and quantum fluids. Our study reveals that the maximum radius of a swirling region of a quantum vortex can be as large as sixty times the healing length. The characterization of the vortex core radius relative to the healing length is reported for the first time in this paper. Furthermore, the geometrical natures of vortex axes such as the probability density function of the curvature are characterized by the healing length

    Homeostatic reinforcement learning explains foraging strategies

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P6
    corecore