56,405 research outputs found
Heterogeneous spin state in the field-induced phase of volborthite as seen via 51V nuclear magnetic resonance
We report results of 51V NMR in the field-induced phase of volborthite
Cu3V2O7(OH)dot2H2O, a spin-1/2 antiferromagnet on a distorted kagome lattice.
In magnetic fields above 4.5 T, two types of V sites with different spin-echo
decay rates are observed. The hyperfine field at the fast decaying sites has a
distribution, while it is more homogeneous at the slowly decaying sites. Our
results indicate a heterogeneous state consisting of two spatially alternating
Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting
with the other showing a conventional static order.Comment: 5 pages, 4 figure
Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot
A numerical renormalization-group study of the conductance through a quantum
wire side-coupled to a quantum dot is reported. The temperature and the
dot-energy dependence of the conductance are examined in the light of a
recently derived linear mapping between the Kondo-regime temperature-dependent
conductance and the universal function describing the conductance for the
symmetric Anderson model of a quantum wire with an embedded quantum dot. Two
conduction paths, one traversing the wire, the other a bypass through the
quantum dot, are identified. A gate potential applied to the quantum wire is
shown to control the flow through the bypass. When the potential favors
transport through the wire, the conductance in the Kondo regime rises from
nearly zero at low temperatures to nearly ballistic at high temperatures. When
it favors the dot, the pattern is reversed: the conductance decays from nearly
ballistic to nearly zero. When the fluxes through the two paths are comparable,
the conductance is nearly temperature-independent in the Kondo regime, and a
Fano antiresonance in the fixed-temperature plot of the conductance as a
function of the dot energy signals interference. Throughout the Kondo regime
and, at low temperatures, even in the mixed-valence regime, the numerical data
are in excellent agreement with the universal mapping.Comment: 12 pages, with 9 figures. Submitted to PR
Theoretical study of the decay-out spin of superdeformed bands in the Dy and Hg regions
Decay of the superdeformed bands have been studied mainly concentrating upon
the decay-out spin, which is sensitive to the tunneling probability between the
super- and normal-deformed wells. Although the basic features are well
understood by the calculations, it is difficult to precisely reproduce the
decay-out spins in some cases. Comparison of the systematic calculations with
experimental data reveals that values of the calculated decay-out spins scatter
more broadly around the average value in both the  150 and 190
regions, which reflects the variety of calculated tunneling probability in each
band.Comment: 6 pages 4 figures (30 PS files). To appear in Proc. of NS2000
  (Nuclear Structure 2000) conf., at MSU, 15-19 Aug., 200
- …
