2,382 research outputs found

    Vaccine Effectiveness against Medically Attended Laboratory-Confirmed Influenza in Japan, 2011?2012 Season

    Get PDF
    The objective of this study was to estimate influenza vaccine effectiveness (VE) against medically attended, laboratoryconfirmed influenza during the 2011-2012 season in Japan using a test-negative case-control study design. The effect of cocirculating non-influenza respiratory viruses (NIRVs) on VE estimates was also explored. Nasopharyngeal swab samples were collected from outpatients with influenza-like illnesses (ILIs) in a community hospital in Nagasaki, Japan. Thirteen respiratory viruses (RVs), including influenza A and B, were identified from the samples using a multiplex polymerase chain reaction. The difference in VE point estimates was assessed using three different controls: ILI patients that tested negative for influenza, those that tested negative for all RVs, and those that tested positive for NIRVs. The adjusted VE against medically attended, laboratory-confirmed influenza using all influenza-negative controls was 5.3% (95% confidence interval [CI], -60.5 to 44.1). The adjusted VEs using RV-negative and NIRV-positive controls were -1.5% (95% CI, -74.7 to 41) and 50% (95% CI, -43.2 to 82.5), respectively. Influenza VE was limited in Japan during the 2011-2012 season. Although the evidence is not conclusive, co-circulating NIRVs may affect influenza VE estimates in test-negative case-control studies

    The role of ongoing dendritic oscillations in single-neuron dynamics

    Get PDF
    The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought

    Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures

    Get PDF
    Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects

    Elevated transaminases as a predictor of coma in a patient with anorexia nervosa: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Liver injury is a frequent complication associated with anorexia nervosa, and steatosis of the liver is thought to be the major underlying pathology. However, acute hepatic failure with transaminase levels over 1000 IU/mL and deep coma are very rare complications and the mechanism of pathogenesis is largely unknown.</p> <p>Case presentation</p> <p>A 37-year-old Japanese woman showed features of acute liver failure and hepatic coma which were not associated with hypoglycemia or hyper-ammonemia. Our patient's consciousness was significantly improved with the recovery of liver function and normalization of transaminase levels after administration of nutritional support.</p> <p>Conclusions</p> <p>Our case report demonstrates that transaminase levels had an inverse relationship with the consciousness of our patient, although the pathogenesis of coma remains largely unknown. This indicates that transaminase levels can be one of the key predictors of impending coma in patients with anorexia nervosa. Therefore, frequent monitoring of transaminase levels combined with rigorous treatment of the underlying nutritional deficiency and psychiatric disorder are necessary to prevent this severe complication.</p

    Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators

    Get PDF
    Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol) recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail. Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties. We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of oscillators are expected to maintain a stable grid for approximately t = 5µ3/(4πσ)2 seconds where µ is the mean period of an oscillator in seconds and σ2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell models are discussed

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Altering crystal growth and annealing in ice-templated scaffolds.

    Get PDF
    The potential applications of ice-templating porous materials are constantly expanding, especially as scaffolds for tissue engineering. Ice-templating, a process utilizing ice nucleation and growth within an aqueous solution, consists of a cooling stage (before ice nucleation) and a freezing stage (during ice formation). While heat release during cooling can change scaffold isotropy, the freezing stage, where ice crystals grow and anneal, determines the final size of scaffold features. To investigate the path of heat flow within collagen slurries during solidification, a series of ice-templating molds were designed with varying the contact area with the heat sink, in the form of the freeze drier shelf. Contact with the heat sink was found to be critical in determining the efficiency of the release of latent heat within the perspex molds. Isotropic collagen scaffolds were produced with pores which ranged from 90 μm up to 180 μm as the contact area decreased. In addition, low-temperature ice annealing was observed within the structures. After 20 h at -30 °C, conditions which mimic storage prior to lyophilization, scaffold architecture was observed to coarsen significantly. In future, ice-templating molds should consider not only heat conduction during the cooling phase of solidification, but the effects of heat flow during ice growth and annealing.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust, the Newton Trust, and ERC Advanced Grant 320598 3D-E. A.H. held a Daphne Jackson Fellowship funded by the University of Cambridge.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10853-015-9343-
    corecore