12,690 research outputs found

    Ag and N acceptors in ZnO: ab initio study of acceptor pairing, doping efficiency, and the role of hydrogen

    Full text link
    Efficiency of ZnO doping with Ag and N shallow acceptors, which substitute respectively cations and anions, was investigated. First principles calculations indicate a strong tendency towards formation of nearest neighbor Ag-N pairs and N-Ag-N triangles. Binding of acceptors stems from the formation of quasi-molecular bonds between dopants, and has a universal character in semiconductors. The pairing increases energy levels of impurities, and thus lowers doping efficiency. In the presence of donors, pairing is weaker or even forbidden. However, hydrogen has a tendency to form clusters with Ag and N, which favors the Ag-N aggregation and lowers the acceptor levels of such complexes.Comment: 10 pages, 4 figure

    The Formation and Fragmentation of Disks around Primordial Protostars

    Full text link
    The very first stars to form in the Universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.Comment: This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org

    Formation and evolution of primordial protostellar systems

    Full text link
    We investigate the formation of the first stars at the end of the cosmic dark ages with a suite of three-dimensional, moving mesh simulations that directly resolve the collapse of the gas beyond the formation of the first protostar at the centre of a dark matter minihalo. The simulations cover more than 25 orders of magnitude in density and have a maximum spatial resolution of 0.05 R_sun, which extends well below the radius of individual protostars and captures their interaction with the surrounding gas. In analogy to previous studies that employed sink particles, we find that the Keplerian disc around the primary protostar fragments into a number of secondary protostars, which is facilitated by H2 collisional dissociation cooling and collision-induced emission. The further evolution of the protostellar system is characterized by strong gravitational torques that transfer angular momentum between the secondary protostars formed in the disc and the surrounding gas. This leads to the migration of about half of the secondary protostars to the centre of the cloud in a free-fall time, where they merge with the primary protostar and enhance its growth to about five times the mass of the second most massive protostar. By the same token, a fraction of the protostars obtain angular momentum from other protostars via N-body interactions and migrate to higher orbits. On average, only every third protostar survives until the end of the simulation. However, the number of protostars present at any given time increases monotonically, suggesting that the system will continue to grow beyond the limited period of time simulated here.Comment: 19 pages, 13 figures, accepted for publication in MNRAS, movies of the simulations may be downloaded at http://www.mpa-garching.mpg.de/~tgrei

    High-field Phase Diagram and Spin Structure of Volborthite Cu3V2O7(OH)2/2H2O

    Full text link
    We report results of 51V NMR experiments on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice. Following the previous experiments in magnetic fields BB below 12 T, the NMR measurements have been extended to higher fields up to 31 T. In addition to the two already known ordered phases (phases I and II), we found a new high-field phase (phase III) above 25 T, at which a second magnetization step has been observed. The transition from the paramagnetic phase to the antiferromagnetic phase III occurs at 26 K, which is much higher than the transition temperatures from the paramagnetic to the lower field phases I (B < 4.5 T) and II (4.5 < B < 25 T). At low temperatures, two types of the V sites are observed with different relaxation rates and line shapes in phase III as well as in phase II. Our results indicate that both phases II and III exhibit a heterogeneous spin state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order. The magnetization of the latter system exhibits a sudden increase upon entering into phase III, resulting in the second magnetization step at 26 T.We discuss the possible spin structure in phase III.Comment: 9 pages, 12 figure

    Composite CDMA - A statistical mechanics analysis

    Get PDF
    Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission - submitted to J.Stat.Mec

    Specific Heat Study on a Novel Spin-Gapped System : (CH_3)_2NH_2CuCl_3

    Full text link
    Specific heat measurements down to 120mK have been performed on a quasi-one-dimensional S=1/2S=1/2 spin-gapped system (CH3_3)2_2NH2_2CuCl3_3 in a magnetic field up to 8 T. This compound has a characteristic magnetization curve which shows a gapless ground state and a plateau at 1/2 of the saturation value. We have observed a spontaneous antiferromagnetic ordering and a field-induced one below and above the 1/2 plateau field range, respectively. The field versus temperature phase diagram is quite unusual and completely different from those of the other quantum spin systems investigated so far. In the plateau field range, a double-structure in the specific heat is observed, reflecting the coexistence of ferromagnetic and antiferromagnetic excitations. These behaviors are discussed on the basis of a recently proposed novel quantum spin chain model consisting of weakly coupled ferromagnetic and antiferromagnetic dimers.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    Magnetization Process of Kagome-Lattice Heisenberg Antiferromagnet

    Full text link
    The magnetization process of the isotropic Heisenberg antiferromagnet on the kagome lattice is studied. Data obtained from the numerical-diagonalization method are reexamined from the viewpoint of the derivative of the magnetization with respect to the magnetic field. We find that the behavior of the derivative at approximately one-third of the height of the magnetization saturation is markedly different from that for the cases of typical magnetization plateaux. The magnetization process of the kagome-lattice antiferromagnet reveals a new phenomenon, which we call the "magnetization ramp".Comment: 4 pages, 5figures, accepted in J. Phys. Soc. Jpn

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure
    • 

    corecore