259 research outputs found

    Scale-similar clustering of heavy particles in the inertial range of turbulence.

    Get PDF
    Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4/3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4/3 power law is supported by a direct numerical simulation of particle-laden turbulence

    Influences of small-scale oscillations on growth inhibition and ultrastructural changes of Microcystis cells

    Get PDF
    We investigated the effects of small-scale oscillation (SSO) on toxic Microcystis cells. The oscillating device was made of silicon with two axes that had a diameter of similar to 40 mm, and a frequency of 2.5 Hz was observed at 150 rpm. The SSO was effective in inhibiting Microcystis growth. Microcystin release was not observed, whereas cell density barely increased in the oscillating group. Cell size and morphology of the oscillating group were no different from the control group. However, cell quotas of chl.a and microcystin in the oscillating group were half the level of the control group. Crucially, a number of large-sized holes were observed and layered long linear thylakoids were rarely observed in the oscillating group. Therefore, SSO was found to be very effective in Microcystis growth inhibition, and it caused ultrastructural changes without damage to the cell membrane and subsequent microcystin release.ArticleJournal of Environmental Science and Health, Part A.53(13):1161-1166(2018)journal articl

    A GC polymorphism associated with serum 25-hydroxyvitamin D level is a risk factor for hip fracture in Japanese patients with rheumatoid arthritis: 10-year follow-up of the Institute of Rheumatology, Rheumatoid Arthritis cohort study

    Get PDF
    INTRODUCTION: Vitamin D deficiency has been reported to be common in patients with rheumatoid arthritis (RA) who have a higher prevalence of osteoporosis and hip fracture than healthy individuals. Genetic variants affecting serum 25-hydroxyvitamin D (25(OH)D) concentration, an indicator of vitamin D status, were recently identified by genome-wide association studies of Caucasian populations. The purpose of this study was to validate the association and to test whether the serum 25(OH)D-linked genetic variants were associated with the occurrence of hip fracture in Japanese RA patients. METHODS: DNA samples of 1,957 Japanese RA patients were obtained from the Institute of Rheumatology, Rheumatoid Arthritis (IORRA) cohort DNA collection. First, five single nucleotide polymorphisms (SNPs) that were reported to be associated with serum 25(OH)D concentration by genome-wide association studies were genotyped. The SNPs that showed a significant association with serum 25(OH)D level in the cross-sectional study were used in the longitudinal analysis of hip fracture risk. The genetic risk for hip fracture was determined by a multivariate Cox proportional hazards model in 1,957 patients with a maximum follow-up of 10 years (median, 8 years). RESULTS: Multivariate linear regression analyses showed that rs2282679 in GC (the gene encoding group-specific component (vitamin D binding protein)) locus was significantly associated with lower serum 25(OH)D concentration (P = 8.1 × 10(-5)). A Cox proportional hazards model indicated that rs2282679 in GC was significantly associated with the occurrence of hip fracture in a recessive model (hazard ratio (95% confidence interval) = 2.52 (1.05-6.05), P = 0.039). CONCLUSIONS: A two-staged analysis demonstrated that rs2282679 in GC was associated with serum 25(OH)D concentration and could be a risk factor for hip fracture in Japanese RA patients

    Smad3 Phospho-Isoform Signaling in Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis with insulin resistance, oxidative stress, lipotoxicity, adipokine secretion by fat cells, endotoxins (lipopolysaccharides) released by gut microbiota, and endoplasmic reticulum stress. Together, these factors promote NAFLD progression from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and eventually end-stage liver diseases in a proportion of cases. Hepatic fibrosis and carcinogenesis often progress together, sharing inflammatory pathways. However, NASH can lead to hepatocarcinogenesis with minimal inflammation or fibrosis. In such instances, insulin resistance, oxidative stress, and lipotoxicity can directly lead to liver carcinogenesis through genetic and epigenetic alterations. Transforming growth factor (TGF)-β signaling is implicated in hepatic fibrogenesis and carcinogenesis. TGF-β type I receptor (TβRI) and activated-Ras/c-Jun-N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3 to create two phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TβRI/pSmad3C signaling terminates cell proliferation, while constitutive Ras activation and JNK-mediated pSmad3L promote hepatocyte proliferation and carcinogenesis. The pSmad3L signaling pathway also antagonizes cytostatic pSmad3C signaling. This review addresses TGF-β/Smad signaling in hepatic carcinogenesis complicating NASH. We also discuss Smad phospho-isoforms as biomarkers predicting HCC in NASH patients with or without cirrhosis

    Smad Phospho-Isoforms for Hepatocellular Carcinoma Risk Assessment in Patients with Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) sometimes occurs in mildly fibrotic livers, while HCC incidence in NASH-related cirrhosis is lower than and less predictable than in hepatitis C virus (HCV)-related cirrhosis. Transforming growth factor (TGF)-β signaling in hepatocytic nuclei is implicated in fibrosis and carcinogenesis. TGF-βtype I receptor (TβRI) and c-Jun N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3, resulting in 2 distinct phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). In mature hepatocytes, oncogenic signaling via the JNK/pSmad3L pathway antagonizes signaling via the tumor-suppressive TβRI/pSmad3C pathway. We immunohistochemically examined domain-specific Smad3 phosphorylation in liver biopsy specimens from 30 NASH patients representing different fibrotic stages and 20 chronically infected hepatitis C patients as controls, correlating Smad3 phosphorylation with clinical course. HCC occurred during follow-up in 11 of 12 NASH patients with abundant pSmad3L and limited pSmad3C but in only 2 of 18 with limited pSmad3L. In contrast, HCC developed in 12 of 15 NASH patients with limited pSmad3C but only 1 of 15 with abundant pSmad3C. Two of fourteen NASH patients with mild fibrosis developed HCC, their hepatocytic nuclei showed abundant pSmad3L and limited pSmad3C. Five of sixteen patients with severe fibrosis did not develop HCC, their hepatocytic nuclei showed limited pSmad3L and abundant pSmad3C. Smad phospho-isoforms may represent important biomarkers predicting HCC in NASH and potential therapeutic targets for preventing NASH-related HCC
    corecore