197 research outputs found

    Efficacy of FimA antibody and clindamycin in silkworm larvae stimulated with Porphyromonas gulae

    Get PDF
    Objective: Porphyromonas gulae, a major periodontal pathogen in animals, possesses fimbriae that have been classified into three genotypes (A, B, C) based on the diversity of fimA genes encoding fimbrillin protein (FimA). P. gulae strains with type C fimbriae were previously shown to be more virulent than other types. In this study, we further examined the host toxicity mediated by P. gulae fimbriae by constructing recombinant FimA (rFimA) expression vectors for each genotype and raised antibodies to the purified proteins. Methods and Results: All larvae died within 204 h following infection with P. gulae type C at the low-dose infection, whereas type A and B did not. Among fimA types, the survival rates of the larvae injected with rFimA type C were remarkably decreased, while the survival rates of the larvae injected with rFimA type A and type B were greater than 50%. Clindamycin treatment inhibited the growth of type C strains in a dose-dependent manner, resulting in an increased rate of silkworm survival. Finally, type C rFimA-speci?c antiserum prolonged the survival of silkworm larvae stimulated by infection with P. gulae type C strain or injection of rFimA type C protein. Conclusion: These results suggested that type C fimbriae have high potential for enhancement of bacterial pathogenesis, and that both clindamycin and anti-type C rFimA-specific antibodies are potent inhibitors of type C fimbriae-induced toxicity. This is the first report to establish a silkworm infection model using P. gulae for toxicity assessment

    Inhibition of interleukin-6 signaling attenuates aortitis, left ventricular hypertrophy and arthritis in interleukin-1 receptor antagonist deficient mice

    Get PDF
    The aim of the present study was to examine whether inhibition of Interleukin (IL)-6 signaling by MR16-1, an IL-6 receptor antibody, attenuates aortitis, cardiac hypertrophy, and arthritis in IL-1 receptor antagonist deficient (IL-1RA KO) mice. Four weeks old mice were intraperitoneally administered with either MR16-1 or non-immune IgG at dosages that were adjusted over time for 5 weeks. These mice were stratified into four groups: MR16-1 treatment groups, KO/MR low group (first 2.0 mg, following 0.5 mg/week, n=14) and KO/MR high group (first 4.0 mg, following 2.0 mg/week, n=19) in IL-1RA KO mice, and IgG treatment groups, KO/IgG group (first 2.0 mg, following 1.0 mg/week, n=22) in IL-1RA KO mice, and wild/IgG group (first 2.0 mg, following 1.0 mg/week, n=17) in wild mice. Aortitis, cardiac hypertrophy and arthropathy were histologically analyzed. Sixty-eight percent of the KO/IgG group developed aortitis (53% developed severe aortitis). In contrast, only 21% of the KO/MR high group developed mild aortitis, without severe aortitis (P<0.01, vs KO/IgG group). Infiltration of inflammatory cells, such as neutrophils, T cells, and macrophages, was frequently observed around aortic sinus of the KO/IgG group. Left ventricle and cardiomyocyte hypertrophy were observed in IL-1RA KO mice. Administration of high dosage of MR16-1 significantly suppressed cardiomyocyte hypertrophy. MR16-1 attenuated the incidence and severity of arthritis in IL-1RA KO mice in a dose-dependent manner. In conclusion, blockade of IL-6 signaling may exert a beneficial effect to attenuate severe aortitis, left ventricle hypertrophy, and arthritis

    The Atomic and Electronic structure of 0{\deg} and 60{\deg} grain boundaries in MoS2

    Get PDF
    We have investigated atomic and electronic structure of grain boundaries in monolayer MoS2, where relative angles between two different grains are 0 and 60 degree. The grain boundaries with specific relative angle have been formed with chemical vapor deposition growth on graphite and hexagonal boron nitride flakes; van der Waals interlayer interaction between MoS2 and the flakes restricts the relative angle. Through scanning tunneling microscopy and spectroscopy measurements, we have found that the perfectly stitched structure between two different grains of MoS2 was realized in the case of the 0 degree grain boundary. We also found that even with the perfectly stitched structure, valence band maximum and conduction band minimum shows significant blue shift, which probably arise from lattice strain at the boundary

    The effect of nitrogen lone-pair interaction on the conduction in a single-molecule junction with amine-Au bonding

    Get PDF
    We have applied our previously developed three-dimensional dynamic probe method to analyze the conductance in a Au-/1,4-benzenediamine (BDA)/Au single molecule junction. This structure is a typically used example to demonstrate the high performance of the break junction (BJ) method for measuring conductance with small variations, however, details of the interaction of the nitrogen (N) lone-pair in the amine group with a Au electrode, which is considered to have a fundamental role in determining the conductance of the single molecule junction with the amine, have not yet been clarified and still remain an important issue to be resolved. In this study, we have succeeded, for the first time, in observing the site-dependent change in conductance of this system while the molecular conformation was accurately controlled, and the results were well reproduced by a simulation taking account of the effect of the N lone-pair in an amine bonding with a Au electrode

    Concomitant Nrf2- and ATF4-Activation by Carnosic Acid Cooperatively Induces Expression of Cytoprotective Genes

    Get PDF
    Carnosic acid (CA) is a phytochemical found in some dietary herbs, such as Rosmarinus officinalis L., and possesses antioxidative and anti-microbial properties. We previously demonstrated that CA functions as an activator of nuclear factor, erythroid 2 (NF-E2)-related factor 2 (Nrf2), an oxidative stress-responsive transcription factor in human and rodent cells. CA enhances the expression of nerve growth factor (NGF) and antioxidant genes, such as HO-1 in an Nrf2-dependent manner in U373MG human astrocytoma cells. However, CA also induces NGF gene expression in an Nrf2-independent manner, since 50 μM of CA administration showed striking NGF gene induction compared with the classical Nrf2 inducer tert-butylhydroquinone (tBHQ) in U373MG cells. By comparative transcriptome analysis, we found that CA activates activating transcription factor 4 (ATF4) in addition to Nrf2 at high doses. CA activated ATF4 in phospho-eIF2α- and heme-regulated inhibitor kinase (HRI)-dependent manners, indicating that CA activates ATF4 through the integrated stress response (ISR) pathway. Furthermore, CA activated Nrf2 and ATF4 cooperatively enhanced the expression of NGF and many antioxidant genes while acting independently to certain client genes. Taken together, these results represent a novel mechanism of CA-mediated gene regulation evoked by Nrf2 and ATF4 cooperation

    介護施設高齢者の栄養摂取と活動機能

    Get PDF
    Malnutrition and dehydration in old person are common and are associated with frailty, sarcopenia and poor health outcomes. Relationship between the amounts of energy and water intake and physical function was examined in care home residents. Each amount was positively associated with body weight, BMI, the ability to reach the restroom timely and physical activity, and negatively associated with care-needs levels under long-term care insulance and the rate to use diaper. Thus, nutrition and hydration play an important role in preserving physical function and independence in care home residents

    Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells

    Get PDF
    Background/Aims: Dysregulation of interleukin-6 (IL-6) production in residual renal cells may play a pivotal role in the development of glomerulonephritis (GN). Given that Toll-like receptor 3 (TLR3) signaling has been implicated in the pathogenesis of some forms of GN, we examined activated TLR3-mediated IL-6 signaling in cultured normal human glomerular endothelial cells (GECs). Methods: We treated GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of IL-6 and the cytosolic viral RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) using reverse transcription quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assays. To further elucidate the effects of poly IC on this signaling pathway, we subjected the cells to small interfering RNA (siRNA) against TLR3, interferon (IFN)-β, RIG-I, and MDA5. Results: We found that poly IC induced the expression of RIG-I, MDA5 and IL-6 via TLR3/IFN-β signaling in GECs. siRNA experiments revealed that both MDA5 and RIG-I were involved in the poly IC-induced expression of IL-6, with MDA5 being upstream of RIG-I. Conclusion: Interestingly, cytosolic sensors of viral RNA were found to be involved in IL-6 production via TLR3 signaling in GECs. Regional activation of TLR3/IFN-β/ MDA5/RIG-I/IL-6 axis due to viral and “pseudoviral” infections is involved in innate immunity and inflammatory reactions in GECs. We believe this signaling pathway also plays a pivotal role in the development of some forms of GN
    corecore