244,163 research outputs found

    Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

    Full text link
    Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it. In this paper, we show that similar results hold for constant-time approximation algorithms in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we construct an oracle that serves an access, in constant time, to a nearly optimal solution to a basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii) Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All of those results are \textit{unconditional}. Therefore, for every bounded-degree CSP, we give the best constant-time approximation algorithm among all. A CSP instance is called ϵ\epsilon-far from satisfiability if we must remove at least an ϵ\epsilon-fraction of constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm that distinguishes satisfiable instances from ϵ\epsilon-far instances with probability at least 2/32/3. Using the results above, we also derive, under a technical assumption, an equivalent condition under which a CSP is testable in the bounded-degree model

    Localization for Linear Stochastic Evolutions

    Get PDF
    We consider a discrete-time stochastic growth model on the dd-dimensional lattice with non-negative real numbers as possible values per site. The growth model describes various interesting examples such as oriented site/bond percolation, directed polymers in random environment, time discretizations of the binary contact path process. We show the equivalence between the slow population growth and a localization property in terms of "replica overlap". The main novelty of this paper is that we obtain this equivalence even for models with positive probability of extinction at finite time. In the course of the proof, we characterize, in a general setting, the event on which an exponential martingale vanishes in the limit

    Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality

    Full text link
    We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case p[1+d2,2dd2)p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}}), where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.Comment: Published in at http://dx.doi.org/10.1214/11-AAP794 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore