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Abstract

We consider a class of continuous-time stochastic growth models on d-dimensional
lattice with non-negative real numbers as possible values per site. The class contains
examples such as binary contact path process and potlatch process. We show the equiva-
lence between the slow population growth and localization property that the time integral
of the replica overlap diverges. We also prove, under reasonable assumptions, a localiza-
tion property in a stronger form that the spatial distribution of the population does not
decay uniformly in space.
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1 Introduction

We write N = {0, 1, 2, ...}, N∗ = {1, 2, ...} and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd,
|x| stands for the `1-norm: |x| =

∑d
i=1 |xi|. For η = (ηx)x∈Zd ∈ RZd

, |η| =
∑

x∈Zd |ηx|. Let
(Ω,F , P ) be a probability space. For events A,B ⊂ Ω, A ⊂ B a.s. means that P (A\B) = 0.
Similarly, A = B a.s. mean that P (A\B) = P (B\A) = 0. By a constant, we always means
a non-random constant.

We consider a class of continuous-time stochastic growth models on d-dimensional lattice
Zd with non-negative real numbers as possible values per site, so that the configuration
at time t can be written as ηt = (ηt,x)x∈Zd , ηt,x ≥ 0. We interpret the coordinate ηt,x

as the “population” at time-space (t, x), though it need not be an integer. The class of
growth models considered here is a reasonably ample subclass of the one considered in [Lig85,
Chapter IX] as “linear systems”. For example, it contains examples such as binary contact
path process and potlatch process. The basic feature of the class is that the configurations
are updated by applying the random linear transformation of the following form, when the
Poisson clock rings at time-space (t, z):

ηt,x =
{

K0ηt−,z if x = z,
ηt−,x + Kx−zηt−,z if x 6= z,

(1.1)

where K = (Kx)x∈Zd is a random vector with non-negative entries, and independent copies
of K are used for each update (See section 1.1 for more detail). These models are known to
exhibit, roughly speaking, the following phase transition [Lig85, Chapter IX, sections 3–5]:

i) If the dimension is high d ≥ 3, and if the vector K is not too random, then, with positive
probability, the growth of the population is as fast as its expected value as time the t
tends to infinity, as such the regular growth phase.

ii) If the dimension is low d = 1, 2, or if the vector K is random enough, then, almost surely,
the growth of the population strictly slower than its expected value as the time t tends
to infinity, as such the slow growth phase.

We denote the spatial distribution of the population by:

ρt,x =
ηt,x

|ηt|
1{|ηt|>0}, t > 0, x ∈ Zd. (1.2)

In [NY09a, NY09b], we investigated the case (i) above and showed that the spatial distribu-
tion (1.2) obeys the central limit theorem. We also proved the delocalization property which
says that the spatial distribution (1.2) decays uniformly in space like t−d/2 as time t tends
to infinity.

In the present paper, we turn to the case (ii) above. We first prove the equivalence between
the slow growth and a certain localization property in terms of the divergence of integrated
replica overlap (Theorem 1.3.1 below). We also show that, under reasonable assumptions,
the localization occurs in stronger form that the spatial distribution (1.2) does not decay
uniformly in space as time t tends to infinity (Theorem 1.3.2 below). These, together with
[NY09a, NY09b], verifies the delocalization/localization transition in correspondence with
regular/slow growth transition for the class of model considered here.

It should be mentioned that the delocalization/localization transition in the same spirit
has been discussed recently in various context, e.g., [CH02, CH06, CSY03, CY05, HY09, Sh09,
Yo08a, Yo08b]. In particular, the last paper [Yo08b] by the second author of the present
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article can be considered as the discrete-time counterpart of the present paper. Still, we
believe it worth while verifying the delocalization/localization transition for the continuous-
time growth models discussed here, in view of its classical importance of the model.

1.1 The model

We introduce a random vector K = (Kx)x∈Zd which is bounded and of finite range in the
sense that

0 ≤ Kx ≤ bK1{|x|≤rK} a.s. for some constants bK , rK ∈ [0,∞). (1.3)

Let τ z,i, (z ∈ Zd, i ∈ N∗) be i.i.d. mean-one exponential random variables and T z,i =
τ z,1 + ... + τ z,i. Let also Kz,i = (Kz,i

x )x∈Zd (z ∈ Zd, i ∈ N∗) be i.i.d. random vectors with the
same distributions as K, independent of {τ z,i}z∈Zd,i∈N∗ . Unless otherwise stated, we suppose
for simplicity that the process (ηt)t≥0 starts from a single particle at the origin:

η0 = (η0,x)x∈Zd , η0,x =
{

1 if x = 0,
0 if x 6= 0.

(1.4)

At time t = T z,i, ηt− is replaced by ηt, where

ηt,x =

{
Kz,i

0 ηt−,z if x = z,

ηt−,x + Kz,i
x−zηt−,z if x 6= z.

(1.5)

A formal construction of the process (ηt)t≥0 can be given as a special case of [Lig85, p.427,
Theorem 1.14] via Hille-Yosida theory. In section 1.4, we will also give an alternative con-
struction of the process in terms of a stochastic differential equation.

To exclude uninteresting cases from the viewpoint of this article, we also assume that

the set {x ∈ Zd ; E[Kx] 6= 0} contains a linear basis of Rd, (1.6)
P (|K| = 1) < 1. (1.7)

The first assumption (1.6) makes the model “truly d-dimensional”. The reason for the second
assumption (1.7) is to exclude the case |ηt| ≡ 1 a.s.

Here are some typical examples which fall into the above set-up:

• The binary contact path process (BCPP): The binary contact path process (BCPP),
originally introduced by D. Griffeath [Gri83] is a special case the model, where

K =
{

(δx,0 + δx,e)x∈Zd with probability λ
2dλ+1 , for each 2d neighbor e of 0

0 with probability 1
2dλ+1 .

(1.8)

The process is interpreted as the spread of an infection, with ηt,x infected individuals at time
t at the site x. The first line of (1.8) says that, with probability λ

2dλ+1 for each |e| = 1, all
the infected individuals at site x− e are duplicated and added to those on the site x. On the
other hand, the second line of (1.8) says that, all the infected individuals at a site become
healthy with probability 1

2dλ+1 . A motivation to study the BCPP comes from the fact that
the projected process

(ηt,x ∧ 1)x∈Zd , t ≥ 0

is the basic contact process [Gri83].
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• The potlatch process: The potlatch process discussed in e.g. [HL81] and [Lig85, Chapter
IX] is also a special case of the above set-up, in which

Kx = Wkx, x ∈ Zd. (1.9)

Here, k = (kx)x∈Zd ∈ [0,∞)Zd
is a non-random vector and W is a non-negative, bounded,

mean-one random variable such that P (W = 1) < 1 (so that the notation k here is consistent
with the definition (1.10) below). The potlatch process was first introduced in [Spi81] for the
case W ≡ 1 and discussed further in [LS81]. It was in [HL81] where case with W 6≡ 1 was
introduced and discussed. Note that we do not restrict ourselves to the case |k| = 1 unlike
in [HL81] and [Lig85, Chapter IX].

1.2 The regular and slow growth phases

We now recall the following facts and notion from [Lig85, p. 433, Theorems 2.2 and 2.3],
although our terminologies are somewhat different from the ones in [Lig85]. Let Ft be the
σ-field generated by ηs, s ≤ t.

Lemma 1.2.1 We set:

k = (kx)x∈Zd = (E[Kx])x∈Zd (1.10)

ηt = (e−(|k|−1)tηt,x)x∈Zd . (1.11)

Then,

a) (|ηt|,Ft)t≥0 is a martingale, and therefore, the following limit exists a.s.

|η∞| = lim
t→∞

|ηt|. (1.12)

b) Either
E[|η∞|] = 1 or 0. (1.13)

Moreover, E[|η∞|] = 1 if and only if the limit (1.12) is convergent in L1(P ).

We will refer to the former case of (1.13) as regular growth phase and the latter as slow growth
phase.

The regular growth means that, at least with positive probability, the growth of the
“total number” |ηt| of the particles is of the same order as its expectation e(|k|−1)t|η0|. On
the other hand, the slow growth means that, almost surely, the growth of |ηt| is slower than
its expectation.

Since we are mainly interested in the slow growth phase in this paper, we now present
sufficient conditions for the slow growth.

Proposition 1.2.2 a) For d = 1, 2, |η∞| = 0 a.s. In particular for d = 1, there exists a
constant c > 0 such that:

|ηt| = O(e−ct), as t → ∞, a.s. (1.14)

b) For any d ≥ 1, suppose that: ∑
x∈Zd

E [Kx lnKx] > |k| − 1 (1.15)

Then, again, there exists a constant c > 0 such that (1.14) holds.
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Proof: Except for (1.14), these sufficient conditions are presented in [Lig85, Chapter IX,
sections 4–5]. The exponential decay (1.14) follows from similar arguments as in discrete-
time models discussed in [Yo08a, Theorems 3.1.1 and 3.2.1]. 2

Remarks: 1) For BCPP, (1.15) is equivalent to λ < (2d)−1, in which case it is known that
|ηt| ≡ 0 for large enough t’s a.s. [Lig85, Example 4.3.(c) on p. 33, together with Theorem
1.10 (a) on p. 267]. Thus, Proposition 1.2.2(b) applies only in a trivial manner for BCPP.
In fact, we do not know if there is a value λ for which BCPP with d ≥ 3 is in slow growth
phase, without getting extinct a.s. For potlatch process,

(1.15) ⇐⇒ E[W lnW ] >
|k| − 1 −

∑
x kx ln kx

|k|
.

Thus, (1.15) and hence (1.14) is true if W is “random enough”.
2) A sufficient condition for the regular growth phase will be given by (1.26) below.

1.3 Results

Recall that we have defined the spatial distribution of the population by (1.2). Interesting
objects related to the density would be

ρ∗t = max
x∈Zd

ρt,x, and Rt =
∑
x∈Zd

ρ2
t,x. (1.16)

ρ∗t is the density at the most populated site, while Rt is the probability that a given pair
of particles at time t are at the same site. We call Rt the replica overlap, in analogy with
the spin glass theory. Clearly, (ρ∗t )

2 ≤ Rt ≤ ρ∗t . These quantities convey information
on localization/delocalization of the particles. Roughly speaking, large values of ρ∗t or Rt

indicate that the most of the particles are concentrated on small number of “favorite sites”
(localization), whereas small values of them imply that the particles are spread out over a
large number of sites (delocalization).

We first show that the regular and slow growth are characterized, respectively by con-
vergence (delocalization) and divergence (localization) of the integrated replica overlap:∫ ∞
0 Rsds.

Theorem 1.3.1 a) Suppose that P (|η∞| > 0) > 0. Then,∫ ∞

0
Rsds < ∞ a.s.

b) Suppose on the contrary that P (|η∞| = 0) = 1. Then,

{ survival } =
{ ∫ ∞

0
Rsds = ∞

}
, a.s. (1.17)

where {survival} = {|ηt| 6= 0 for all t ≥ 0}. Moreover, there exists a constant c > 0
such that:

|ηt| ≤ exp
(
−c

∫ t

0
Rsds

)
for all large enough t’s, a.s. (1.18)

Results of this type are fundamental in analyzing a certain class of spatial random growth
models, such as directed polymers in random environment [CH02, CH06, CSY03, CY05],
linear stochastic evolutions [Yo08b], branching random walks and Brownian motions in ran-
dom environment [HY09, Sh09]. Until quite recently, however, this type of results were
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available only when no extinction at finite time is allowed, i.e., |ηt| > 0 for all t ≥ 0, e.g.,
[CH02, CH06, CSY03, CY05, HY09, Sh09]. In fact, the proof there relies on the analysis of
the supermartingale ln |η̄t|, which is not even defined if extinction at finite time is possible.
To overcome this problem, we will adapt a more general approach introduced in [Yo08b].

Next, we present a result (Theorem 1.3.2 below) which says that, under reasonable as-
sumptions, we can strengthen the localization property∫ ∞

0
Rsds = ∞

in (1.17) to: ∫ ∞

0
1{Rs ≥ c}ds = ∞,

where c > 0 is a constant. To state the theorem, we define

βx,y = E[(K − δ0)x(K − δ0)y], x, y ∈ Zd. (1.19)

We also introduce:
G(x) =

∫ ∞

0
P 0

S(St = x)dt, (1.20)

where ((St)t≥0, P
x
S ) is the continuous-time random walk on Zd starting from x ∈ Zd, with

the generator

LSf(x) = 1
2

∑
y∈Zd

(kx−y + ky−x) (f(y) − f(x)) , cf. (1.10). (1.21)

Theorem 1.3.2 Referring to (1.19)–(1.20), suppose either of

a) d = 1, 2.

b) d ≥ 3, P (|η∞| = 0) = 1 and ∑
x,y∈Zd

G(x − y)βx,y > 2. (1.22)

Then there exists a constant c ∈ (0, 1] such that:

{ survival } =
{∫ ∞

0
1{Rs ≥ c}ds = ∞

}
a.s. (1.23)

Our proof of Theorem 1.3.2 is based on the idea of P. Carmona and Y. Hu in [CH02, CH06],
where they prove similar results for directed polymers in random environment. Although the
arguments in [CH02, CH06] are rather complicated and uses special structure of the model, it
was possible to extract the main idea from [CH02, CH06] in a way applicable to our setting.
Also, we could considerably reduce the technical complexity in the argument as compared
with [CH02, CH06].

Remarks: 1) We see from (1.23) that:

{ survival } =
{

lim
t→∞

Rt ≥ c
}

a.s. (1.24)

in consistent with the corresponding result [Yo08b, (1.32)] in the discrete-time case. Note
that, in continuous-time case, the right-hand-side of (1.23) is a stronger statement than that
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of (1.24).
2) We prove (1.23) by way of the following stronger estimate:

{ survival } ⊂

{
lim
t↗∞

∫ t
0 R

3/2
s ds∫ t

0 Rsds
≥ c1

}
a.s. (1.25)

for some constant c1 > 0. The inequality r3/2 ≤ 1{r ≥ c} +
√

cr for r, c ∈ [0, 1] can be used
to conclude (1.23) from (1.25).
3) We note that P (|η∞| > 0) > 0 if

d ≥ 3 and
∑

x,y∈Zd

G(x − y)βx,y < 2. (1.26)

This, together with Theorem 1.3.1(a), shows that the condition (1.22) is necessary, up to
the equality, for (1.23) to be true whenever survival occurs with positive probability. We
see that (1.26) implies P (|η∞| > 0) > 0 via the same line of argument as in [Lig85, p. 464,
Theorem 6.16], where the special case of the potlatch process is discussed. We consider the
dual process ζt ∈ [0,∞)Zd

, t ≥ 0 which evolves in the same way as (ηt)t≥0 except that (1.1)
is replaced by its transpose:

ζt,x =
{ ∑

y∈Zd Ky−xζt−,y if x = z,

ζt−,x if x 6= z.
(1.27)

By [Lig85, p. 445, Theorem 3.12], a sufficient condition for P (|η∞| > 0) > 0 is that there
exists a function h : Zd → (0,∞) such that lim|x|→∞ h(x) = 1 and that:∑

y

q(x, y)h(y) = 0, x ∈ Zd. (1.28)

Here, q(x, y) is the matrix given by [Lig85, p. 445, (3.8)–(3.9)] for the dual process. In our
setting, it is computed as:

q(x, y) = kx−y + ky−x − 2|k|δx,y + δ0,x

∑
z

βz,z+y,

so that (1.28) becomes:

(LSh)(x) + 1
2δ0,x

∑
y,z

h(y − z)βy,z = 0, x ∈ Zd, cf. (1.21).

Under the assumption (1.26), a choice of such function h is given by h = 1 + cG, where

c =
E[(|K| − 1)2]

1 − 1
2

∑
x,y∈Zd G(x − y)βx,y

.

3) Let πd be the return probability for the simple random walk on Zd. Also, let 〈 ·, · 〉 and ∗
be the inner product of `2(Zd) and the discrete convolution respectively. We then have that

(1.22) ⇐⇒

{
λ < 1

2d(1−2πd) for BCPP,

E[W 2] > (2|k|−1)G(0)
〈 G∗k,k 〉 for the potlatch process.

(1.29)

For BCPP, (1.29) can be seen from that (cf. [NY09a, p. 965])

βx,y =
1{x = 0} + λ1{|x| = 1}

2dλ + 1
δx,y, and G(0) =

2dλ + 1
2dλ

1
1 − πd

.
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To see (1.29) for the potlatch process, we note that 1
2(k + ǩ) ∗G = |k|G− δ0, with ǩx = k−x

and that
βx,y = E[W 2]kxky − kxδy,0 − kyδx,0 + δx,0δy,0.

Thus, ∑
x,y∈Zd

G(x − y)βx,y = E[W 2]〈 G ∗ k, k 〉 − 〈 G, k + ǩ 〉 + G(0)

= E[W 2]〈 G ∗ k, k 〉 + 2 − (2|k| − 1)G(0),

from which (1.29) for the potlatch process follows.

1.4 SDE description of the process

We now give an alternative description of the process in terms of a stochastic differential
equation (SDE). We introduce random measures on [0,∞) × [0,∞)Zd

by

N z(dsdξ) =
∑
i≥1

1{(T z,i,Kz,i) ∈ dsdξ}, N z
t (dsdξ) = 1{s≤t}N

z(dsdξ). (1.30)

Then, N z, z ∈ Zd are independent Poisson random measures on [0,∞) × [0,∞)Zd
with the

intensity
ds × P (K ∈ ·).

The precise definition of the process (ηt)t≥0 is then given by the following stochastic differ-
ential equation:

ηt,x = η0,x +
∑
z∈Zd

∫
N z

t (dsdξ) (ξx−z − δx,z) ηs−,z. (1.31)

By (1.3), it is standard to see that (1.31) defines a unique process ηt = (ηt,x), (t ≥ 0) and
that (ηt) is Markovian.

2 Proofs

It is convenient to introduce the following notation:

ν = P (K ∈ ·) ∈ P([0,∞)Zd
), the law of K. (2.1)

Ñ z(dsdξ) = N z(dsdξ) − dsν(dξ), Ñ z
t (dsdξ) = 1s≤tÑ

z(dsdξ). (2.2)

2.1 Proof of Theorem 1.3.1

The proof of Theorem 1.3.1 is based on the following

Lemma 2.1.1

{ |η∞| = 0, survival } =
{ ∫ ∞

0
Rsds = ∞

}
, a.s. (2.3)

Moreover, there exists a constant c > 0 such that: (1.18) holds a.s. on the event
{ ∫ ∞

0 Rsds = ∞
}
.
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Proof: We see from (1.31) that

|ηt| = |η0| +
∑

z

∫
Ñ z

t (dsdξ)|ηs−|(|ξ| − 1)ρs−,z (cf. (2.2))

= |η0| +
∫ t

0
|ηs−|dMs

where
Mt =

∑
z

∫
Ñ z

t (dsdξ)(|ξ| − 1)ρs−,z.

Then, by the Doléans-Dale exponential formula (e.g., [HWY92, p. 248, 9.39]),

|ηt| = exp (Mt) Dt,

where
Dt =

∏
s≤t

(1 + ∆Ms) exp (−∆Ms) , with ∆Mt = Mt − Mt−.

Note also the predictable quadratic variation of M· is given by

1) 〈 M 〉t = E[(|K| − 1)2]
∫ t

0
Rsds.

Since −1 ≤ ∆Mt ≤ bK − 1 < ∞, we have that (See e.g.[HWY92, p. 222, 8.32])

2) { 〈 M 〉∞ < ∞ } ⊂ {[M ]∞ < ∞, Mt converges as t ↗ ∞} a.s.

3) { 〈 M 〉∞ = ∞ } ⊂
{

lim
t→∞

〈 M 〉t
[M ]t

= 1, lim
t→∞

Mt

〈 M 〉t
= 0

}
a.s.

where
[M ]t =

∑
s≤t

(∆Ms)2

We start with the “⊃” part of (2.3): Note that (1+u)e−u ≤ e−c1u2
for −1 ≤ u ≤ bK−1, where

c1 > 0 is a constant. We suppose that
∫ ∞
0 Rsds = ∞, or equivalently that, 〈 M 〉∞ = ∞.

Then, for large t,

exp (Mt) Dt ≤ exp (Mt − c1[M ]t)
3)

≤ exp
(
−c1

2
〈 M 〉t

) 1)

≤ exp
(
−c2

∫ t

0
Rsds

)
This shows that

∫ ∞
0 Rsds = ∞ implies |η∞| = 0, together with the bound (1.18).

We now turn to the “⊂” part of (2.3): We need to prove that

4) {
∫ ∞
0 Rsds < ∞ survival}

a.s.
⊂ { |η∞| > 0}.

We have

5) {
∫ ∞
0 Rsds < ∞}

1)–2)
⊂ {Mt converges as t ↗ ∞} a.s.

On the other hand, ∑
s≤t

|(1 + ∆Ms) exp (−∆Ms) − 1| ≤ e

2
[M ]t,

since |(1 + u)e−u − 1| ≤ eu2/2 for u ≥ −1. Thus,
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6) {
∫ ∞
0 Rsds < ∞, survival} ⊂ {Dt converges to a positive limit as t ↗ ∞} a.s.

We now obtain 4) by 5)–6). 2

We state one more technical lemma:

Lemma 2.1.2 Suppose that:

P

(
lim
t→∞

r−t|ηt| > 0
)

> 0, (2.4)

for some r > 0. Then,

{survival} = { lim
t→∞

r−t|ηt| > 0}, P -a.s. (2.5)

Proof: We follow the argument in [CY10, Lemma 4.3.1], which goes back to [Gri83, p. 701].
For (s, y) ∈ [0,∞) × Zd, let ηs,y

t = (ηs,y
t,x )x∈Zd , t ∈ [0,∞) be the process starting from time s,

with one particle at y:

ηs,y
t,x = δx,y +

∑
z∈Zd

∫
N z

(s,s+t](dudξ)(ξx−z − δx,z)η
s,y
u−,z,

where N z
(s,s+t] = N z

s+t − N z
s . Then, for all t ≥ s,

ηt,x =
∑

y

ηs,yη
s,y
t−s,x and hence |ηt| =

∑
y

ηs,y|ηs,y
t−s|.

The assumption (2.4) implies that:

P

(
inf
t≥0

r−t|ηt| > 0
)

> 0,

and hence that:

1) δ
def= P

(
inf
t≥0

r−t|ηt| > ε

)
> 0 for some ε ∈ (0, 1/2).

We now define a sequence of stopping times σ1 < σ2 < . . . as follows.

σ1 = inf{t > 0 ; 0 < |ηt| ≤ εrt}.

Note at this point that:

2) P (σ1 = ∞) ≥ δ,

thanks to 1). Suppose that σ1, . . . , σ` (` ≥ 1) have already been defined. If σ` = ∞, we set
σn = ∞ for all n ≥ ` + 1. Suppose that σ` < ∞. Then ησ`

6≡ 0. Let Y` be the minimum, in
the lexicographical order, of y ∈ Zd such that ησ`,y 6= 0. We now define σ`+1 by:

σ`+1 = σ` + inf{t > 0 ; 0 < |ησ`,Y`
t | ≤ εrt}.

It is easy to see from the construction that:

3) P (σ` < ∞ i.o.) = 0.
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Indeed, we have

P (σ`+1 < ∞|Fσ`
) = P (σ1 < ∞)

2)

≤ 1 − δ,

and hence

P (σ`+1 < ∞) = P (σ` < ∞, σ`+1 < ∞)
= P (σ` < ∞, P (σ`+1 < ∞|Fσ`

))
≤ (1 − δ)P (σ` < ∞) ≤ (1 − δ)`+1

by induction. Then, 3) follows from the Borel-Cantelli lemma.
By 3), we can pick a random ` ∈ N such that P (σ` < ∞, σ`+1 = ∞) = 1. Let us focus on

the event {σ` < ∞, σ`+1 = ∞}. Then, ησ`,Y`
t is defined and |ηt| ≥ ησ`,Y`

|ησ`,Y`
t−σ`

| for all t ≥ σ`.
Note also that, on the event of survival, σ`+1 = ∞ implies that:

|ησ`,Y`
t−σ`

| ≥ εrt−σ` for t ≥ σ`.

Thus, a.s. on the event of survival,

|ηt| ≥ ησ`,Y`
|ησ`,Y`

t−σ`
| ≥ ησ`,Y`

εrt−σ` for t ≥ σ`

hence
{survival}

a.s.
⊂ { lim

t→∞
r−t|ηt| > 0}.

This proves (2.5). 2

Proof of Theorem 1.3.1: a): If P (|η∞| > 0) > 0, then, by Lemma 2.1.2,

{survival} = {|η∞| > 0} a.s.

We see from this and (2.3) that
∫ ∞
0 Rsds < ∞ a.s. on the event of survival, while

∫ ∞
0 Rsds <

∞ is obvious outside the event of survival.
b): This follows from Lemma 2.1.1 2

2.2 Proof of Theorem 1.3.2

Let p be a transition function of a symmetric discrete-time random walk defined by

p(x) =

{
kx + k−x

2(|k| − k0)
if x 6= 0,

0 if x = 0.

and pn be the n-step transition function. We set

gn(x) = δx,0 +
n∑

k=1

pk(x).

Lemma 2.2.1 Under the assumptions of Theorem 1.3.2, there exists n such that:∑
x,y

gn(x − y)βx,y > 2(|k| − k0). (2.6)

Proof: Since the discrete-time random walk with the transition probability p is the jump
chain of the continuous-time random walk ((St)t≥0, P

x
S ) with the generator (1.21), we have

that

11



1) lim
n→∞

gn(x) = (|k| − k0)G(x) for all x ∈ Zd.

For d ≥ 3, G(x) < ∞ for any x ∈ Zd and βx,y 6= 0 only when |x|, |y| ≤ rK , we see from 1)
that

lim
n→∞

∑
x,y

gn(x − y)βx,y = (|k| − k0)
∑
x,y

G(x − y)βx,y.

Thus, (2.6) holds for all large enough n’s.
To show (2.6) for d = 1, 2, we will prove that

lim
n→∞

∑
x,y

g2n−1(x − y)βx,y = ∞.

For f ∈ `1(Zd), we denote its Fourier transform by

f̂(θ) =
∑
x∈Zd

f(x) exp(ix · θ), θ ∈ I
def= [−π, π]d.

We then have that

g2n−1(x) =
1

(2π)d

∫
I

1 − p̂(θ)2n

1 − p̂(θ)
exp(ix · θ)dθ

and hence that∑
x,y

g2n−1(x − y)βx,y =
1

(2π)d

∫
I

1 − p̂(θ)2n

1 − p̂(θ)

∑
x,y

exp(i(x − y) · θ)E[(K − δ0)x(K − δ0)y]dθ

=
1

(2π)d

∫
I

1 − p̂(θ)2n

1 − p̂(θ)
E[|K̂(θ) − 1|2]dθ.

Since p(·) is even, we see that p̂(θ) ∈ [−1, 1] for all θ ∈ I. Also, by (1.6), there exist constants
ci > 0 (i = 1, 2, 3) such that:

0 ≤ 1 − c1|θ|2 ≤ p̂(θ) ≤ 1 − c2|θ|2 for |θ| ≤ c3.

These imply that

lim
n→∞

∑
x,y

g2n−1(x − y)βx,y ≥ 1
(2π)dc1

∫
|θ|≤c2

E[|K̂(θ) − 1|2]
|θ|2

dθ.

The integral on the right-hand-side diverges if d ≤ 2, since

E[|K̂(0) − 1|2] = E[(|K| − 1)2] 6= 0.

2

We take an n in Lemma 2.2.1 and fix it. We then set:

g = gn and St = 〈 g ∗ ρt, ρt 〉, (2.7)

where the bracket 〈 ·, · 〉 and ∗ stand for the inner product of `2(Zd) and the discrete
convolution respectively. In what follows, we will often use the Hausdorff-Young inequality:

|(f ∗ h)2|1/2 ≤ |f ||h2|1/2 f ∈ `1(Zd), h ∈ `2(Zd). (2.8)

For example, we have that

0 ≤ St

Schwarz
≤ |(g ∗ ρt)2|1/2|(ρt)2|1/2

(2.8)

≤ |g||(ρt)2| = |g|Rt < ∞. (2.9)

The proof of Theorem 1.3.2 is based on the following

12



Lemma 2.2.2 Let
St = S0 + Mt + At

be the Doob decomposition, where M· and A· are a martingale and a predictable process,
respectively. Then,

a) There is constants c1, c2 ∈ (0,∞) such that:

At ≥
∫ t

0

(
c1Rs − c2R3/2

s

)
ds (2.10)

b) {∫ ∞

0
Rsds = ∞

}
⊂

{
lim
t→∞

Mt∫ t
0 Rsds

= 0

}
a.s. (2.11)

Proof of Theorem 1.3.2: By Theorem 1.3.1 and the remark after Theorem 1.3.2, it is enough
to prove that

1) lim
t↗∞

∫ t
0 R

3/2
s ds∫ t

0 Rsds
≥ c a.s. on D

def=
{∫ ∞

0
Rtdt = ∞

}
for a positive constant c. It follows from (2.9) and (2.11) that

lim
t→∞

At∫ t
0 Rsds

= 0 a.s. on D

and hence from (2.10) that

lim
t→∞

∫ t
0 R

3/2
s ds∫ t

0 Rsds
≥ c1

c2
a.s. on D.

This proves 1) and hence Theorem 1.3.2. 2

2.3 Proof of Lemma 2.2.2

Proof of part (a): To make the expressions below easier to read, we introduce the following
shorthand notation:

Jt,x,z(ξ) = ρt,x + (ξ − δ0)x−zρt,z,

J t,x,z(ξ) =
ηt,x + (ξ − δ0)x−zηt,z

|ηt| + (|ξ| − 1)ηt,z
=

Jt,x,z(ξ)
1 + (|ξ| − 1)ρt,z

.

We then rewrite St as:

St = S0 +
∑

z

∫
N z

t (dudξ)
∑
x,y

g(x − y)
(
Ju−,x,z(ξ)Ju−,y,z(ξ) − ρu−,xρu−,y

)
= S0 + Mt + At

where At =
∫ t
0 Asds has been defined by

As =
∑
x,y,z

g(x − y)
∫

ν(dξ)
(
Js,x,z(ξ)Js,y,z(ξ) − ρs,xρs,y

)
13



To bound As from below, we note that (1 + x)−2 ≥ 1 − 2x for x ≥ −1. Then,

Js,x,z(ξ)Js,y,z(ξ) − ρs,xρs,y

≥ Jt,x,z(ξ)Jt,y,z(ξ) − 2(|ξ| − 1)ρs,zJt,x,z(ξ)Jt,y,z(ξ) − ρs,xρs,y

= Us,x,y,z(ξ) − 2Vs,x,y,z(ξ) − 2Ws,x,y,z(ξ), (2.12)

where

Us,x,y,z(ξ) = Js,x,z(ξ)Js,y,z(ξ) − ρs,xρs,y (2.13)
Vs,x,y,z(ξ) = (|ξ| − 1)Us,x,y,z(ξ)ρs,z (2.14)

Ws,x,y,z(ξ) = (|ξ| − 1)ρs,xρs,yρs,z. (2.15)

We will see that ∑
x,y,z

g(x − y)
∫

Vs,x,y,z(ξ)ν(dξ) ≤ cR3/2
s . (2.16)

Here and in what follows, c denotes a multiplicative constant, which does not depends on
time variable s and space variables x, y, .... To prove (2.16), we can bound the factor |ξ| − 1
by a constant. We write

Us,x,y,z(ξ) = (ξ − δ0)y−zρs,xρs,z + (ξ − δ0)x−zρs,yρs,z + (ξ − δ0)x−z(ξ − δ0)y−zρ
2
s,z (2.17)

We look at the contribution from the second term on the right-hand-side of (2.17) to the
left-hand-side of (2.16).∑

x,y,z

g(x − y)(ξ − δ0)x−zρ
2
s,zρs,y = 〈 g ∗ ρs, (ξ − δ0) ∗ ρ2

s 〉

≤ |(g ∗ ρs)2|1/2|((ξ − δ0) ∗ ρ2
s)

2|1/2

≤ |g|R1/2
s |(ξ − δ0)2|1/2|ρ2

s| ≤ cR3/2
s

Contributions from the other two terms on the right-hand-side of (2.17) can be bounded
similarly. Hence we get (2.16).

On the other hand,∑
x,y,z

g(x − y)
∫

Us,x,y,zdν

=
∑
x,y,z

g(x − y)
(
(k − δ0)y−zρs,xρs,z + (k − δ0)x−zρs,yρs,z + βx−z,y−zρ

2
s,z

)
= 〈 g ∗ (k − δ0) ∗ ρs, ρs 〉 + 〈 g ∗ (ǩ − δ0) ∗ ρs, ρs 〉 +

∑
x,y

g(x − y)βx,yRs, (2.18)

where ǩx = k−x. Also,∑
x,y,z

g(x − y)
∫

Ws,x,y,zdν = (|k| − 1)〈 g ∗ ρs, ρs 〉. (2.19)

Note that
(k − δ0) + (ǩ − δ0) − 2(|k| − 1)δ0 = 2(|k| − k0)(p − δ0),

and that
g ∗ (p − δ0) = pn+1 − δ0 ≥ −δ0.
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Thus,

〈 g ∗ (k − δ0) ∗ ρs, ρs 〉 + 〈 g ∗ (ǩ − δ0) ∗ ρs, ρs 〉 − 2(|k| − 1)〈 g ∗ ρs, ρs 〉
= 2(|k| − k0)〈 g ∗ (p − δ0) ∗ ρs, ρs 〉 ≥ 2(|k| − k0)Rs.

By this, (2.18) and (2.19), we get

∑
x,y,z

g(x − y)
∫

(Us,x,y,z − 2Ws,x,y,z) dν ≥

(∑
x,y

g(x − y)βx,y − 2(|k| − k0)

)
Rs. (2.20)

By (2.12), (2.16), (2.20) and Lemma 2.2.1, we obtain (2.10) . 2

Proof of part (b): The predictable quadratic variation of the martingale M· can be given by:

1) 〈M 〉t =
∑

z

∫ t

0
ds

∫
Fs,z(ξ)2ν(dξ)

where
Fs,z(ξ) =

∑
x,y

g(x − y)(J̄s,x,z(ξ)J̄s,y,z(ξ) − ρs,xρs,y)

Recall that

{〈M 〉∞ < ∞} ⊂ {Mt converges as t → ∞} a.s.

{〈M 〉∞ = ∞} ⊂
{

lim
t→∞

Mt

〈M 〉t
= 0

}
a.s.

Thus, to prove (2.11), it is enough to show that there is a constant c ∈ (0,∞) such that:

2) 〈M 〉t ≤ c

∫ t

0
Rsds.

We will do so via two different bounds for |Fs,z(ξ)|:

3) |Fs,z(ξ)| ≤ 2|g| for all s, z, ξ,

4) |Fs,z(ξ)| ≤ cρs,z if ρs,z ≤ 1/2.

To get 3), we note that 0 ≤ J̄s,x,z(ξ) ≤ 1 and
∑

x J̄s,x,z = 1 for each z. Thus,

|Fs,z(ξ)| ≤ 〈 g ∗ J̄s,·,z, J̄s,·,z 〉 + 〈 g ∗ ρs, ρs 〉
≤ |(g ∗ J̄s,·,z)2|1/2|J̄2

s,·,z|1/2 + |(g ∗ ρs)2|1/2|ρ2
s|1/2

≤ |g||J̄2
s,·,z| + |g|Rs ≤ 2|g|.

To get 4), we assume ρs,z ≤ 1/2. Then, 1 + (|ξ| − 1)ρs,z ≥ 1/2 and thus, recalling (2.13) and
(2.15),

|Fs,z(ξ)| ≤
∑
x,y

g(x − y)
|Us,x,y,z(ξ) − Ws,x,y,z(ξ)|

1 + (|ξ| − 1)ρs,z

≤ 2
∑
x,y

g(x − y)(|Us,x,y,z(ξ)| + |Ws,x,y,z(ξ)|),
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By (2.15) and (2.17), it is clear that the last summation is bounded by cρs,z for some c.
3)–4) can be used to obtain 2) as follows. For each s, there is at most one z such that
ρs,z > 1/2, and Rs > 1/4 if there is such z. Thus,∑

z

1{ρs,z > 1/2} < 4Rs.

By this and 3)–4), we have∑
z

Fs,z(ξ)2 ≤ 4|g|2
∑

z

1{ρs,z > 1/2} + c2
∑

z

1{ρs,z ≤ 1/2}ρ2
s,z ≤ (16|g|2 + c2)Rs.

Plugging this into 1), we are done. 2

Acknowledgements: The authors thank Yuichi Shiozawa for discussions.
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3 Proof of Proposition 1.2.2

3.1 Proof of part (a)

We will prove that for θ ∈ (0, 1),

P [|ηt|θ] =
{

O(exp(−ct1/3)) if d = 1,

O(exp(−c
√

ln t)) if d = 2
as t −→ ∞, (3.1)

where c ∈ (0,∞) is a constant. This implies that limt→∞ |ηt| = 0, a.s. by Fatou’s lemma.
Following [CY05, proof of Theorem 2.1.1.(b)], we will prove (3.1) via differential inequality for
the fractional moment on the left-hand-side. We first present a random walk representation
of the one-point function:

Lemma 3.1.1

P [ηt,x] = e(|k|−1)t
∑
y∈Zd

η0,yP
y
X [Xt = x], (t, x) ∈ [0,∞) × Zd, (3.2)

where k ∈ [0,∞)Zd
is defined by (1.10) and ((Xt)t≥0, P

x
X) is the continuous-time random

walk on Zd with the generator

LXf(x) =
∑
y∈Zd

P [Ky−x] (f(y) − f(x)) .

Proof: This follows from [NY09a, Lemma 2.1.1] and the duality. 2

The proof of (3.1) is based on the following lemma.

Lemma 3.1.2 For θ ∈ (0, 1), there exists c0 > 0 such that for any Λ ⊂ Zd,

d

dt
P

[
|ηt|θ

]
≤ − c0

|Λ|
P

[
|ηt|θ

]
+

2c0

|Λ|
P 0

X(Xt 6⊂ Λ)θ, (3.3)

where ((Xt)t≥0, P
0
X) is the random walk in Lemma 3.1.1.

Let us postpone the proof of this lemma for a moment to complete the proof of (3.1). In
what follows, ci, i = 1, 2 denote universal constants. We set

Λ = (mt + (−
√

t`t/2,
√

t`t/2]d) ∩ Zd,

where `t = t1/3 for d = 1, and `t =
√

ln t for d = 2.

P (Xt 6⊂ Λ) ≤ P (|Xt − mt| ≥
√

t`t/2) ≤ c1 exp (−`t/c1) ,

and hence by (3.3), u(t) = Q
[
|ηt|θ

]
satisfies

d

dt
u(t) ≤ − c0

(t`t)d/2
u(t) +

c2 exp (−θ`t/c1)
(t`t)d/2

for large t. We then have by a variant of Gronwall’s inequality (Lemma 3.1.3 below) that

u(t) ≤ exp

(
−c0

∫ t

t/2

ds

(s`s)d/2

)
+ c2

∫ t

t/2

exp (−θ`s/c1)
(s`s)d/2

ds.

By computing the integrals on the right-hand-side, we get (3.1). 2

Here is a technical lemma, which is a generalization of Gronwall’s inequality.
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Lemma 3.1.3 Let t0 ≥ 0, u ∈ C1([t0,∞) → R), and v, w ∈ C([t0,∞) → R) be such that:

d

dt
u(t) ≤ −v(t)u(t) + w(t), for all t > t0. (3.4)

Then, with V (t) =
∫ t
t0

v(s)ds

u(t) ≤
(

u(t0) +
∫ t

t0

w(s)eV (s)ds

)
e−V (t), for all t > t0. (3.5)

In particular, when v, w are non-negative, it holds

u(t) ≤ u(t0)e−V (t) +
∫ t

t0

w(s)ds, t > t0. (3.6)

Proof: We write u(t) for the right-hand side of (3.5). Then,

u(t0) = u(t0),
d

dt
u(t) = w(t) − v(t)u(t), for all t > t0,

and therefore,

d

dt

(
[u(t)−u(t)]eV (t)

)
=

[
d

dt
(u(t)−u(t)) + v(t) (u(t)−u(t))

]
eV (t) ≤ 0 , for all t > t0.

By integration, this implies u(t) ≤ u(t) for all t > t0. All the statements follow easily. 2

3.2 Proof of Lemma 3.1.2

Lemma 3.2.1 For m, θ ∈ (0,∞),

e−mt|ηt|θ = |η0|θ − m

∫ t

0
e−ms|ηs|θds +

∑
z∈Zd

∫
N z

t (dsdξ)e−ms|ηs−|θaθ(s−, ξ, z), (3.7)

where
aθ(s, ξ, z) = (1 + (|ξ| − 1)ρs,z)

θ − 1.

Lemma 3.2.2 For θ ∈ (0, 1), there exists c1 = c1(θ) ∈ (0,∞) (j = 1, 2) such that:

c1ρ
2P

[
(|K| − 1)2

2 + |K|

]
≤ 1 + (|k| − 1)θρ − P

[
(1 + (|K| − 1)ρ)θ

]
≤ ρ2P [(|K| − 1)2]

for all ρ ∈ [0, 1].

Proof: There exists c1 = c1(θ) ∈ (0, 1) such that:

c1
u2

2 + u
≤ 1 + θu − (1 + u)θ ≤ u2 for all u ∈ [−1,∞).

Thus, for all ρ ∈ [0, 1],

c1ρ
2P

[
(|K| − 1)2

2 + (|K| − 1)ρ

]
≤ 1 + (|k| − 1)θρ − P

[
(1 + (|K| − 1)ρ)θ

]
≤ ρ2P [(|K| − 1)2].

Since 1 ≤ 2 + (|K| − 1)ρ ≤ 2 + |K|, we have the desired inequality. 2

19



Lemma 3.2.3 For θ ∈ (0, 1) and Λ ⊂ Zd,

|Λ|P
[
|ηt|θRt

]
≥ P

[
|ηt|θ

]
− 2P 0

X(Xt 6∈ Λ)θ. (3.8)

for all t ≥ 0, where ((Xt)t≥0, P
0
X) is the random walk in Lemma 3.1.1.

Proof: We have on the event {|ηt| > 0} that

|Λ|Rt ≥ |Λ|
∑
y∈Λ

ρt(y)2 ≥

∑
y∈Λ

ρt(y)

2

=

1 −
∑
y 6∈Λ

ρt(y)

2

≥ 1 − 2
∑
y 6∈Λ

ρt(y)

≥ 1 − 2

∑
y 6∈Λ

ρt(y)

θ

. (3.9)

Note also that

P


∑

y 6∈Λ

ηt,y

θ
 ≤ P

∑
y 6∈Λ

ηt,y

θ

= P y
X(Xt 6∈ Λ)θ, (3.10)

where the second equality comes from Lemma 3.1.1. We therefore see that

|Λ|P
[
|ηt|θRt

] (3.9)

≥ P
[
|ηt|θ

]
− 2P


∑

y 6∈Λ

ηt,y

θ


(3.10)

≥ P
[
|ηt|θ

]
− 2P 0

X(Xt 6∈ Λ)θ.

2

Proof of Lemma 3.1.2: We see from Lemma 3.2.1 that u(t) = Q
[
|ηt|θ

]
satisfies

u(t) = 1 − (|k| − 1)θ
∫ t

0
u(s)ds +

∑
z

∫ t

0
ds

∫
ν(dξ)P [aθ(s, ξ, z)|ηs|θ],

and hence
d

dt
u(t) = −(|k| − 1)θu(t) +

∑
z

∫
ν(dξ)P [aθ(t, ξ, z)|ηt|θ] (3.11)

On the other hand, we have by Lemma 3.2.2 that∫
ν(dξ)P [aθ(t, ξ, z)|ηt|θ] ≤ P [(θ(|k| − 1)ρt(z) − cρt(z)2)|ηt|θ],

where c = c(θ) > 0 is a constant. Plugging this into (3.11), we get

d

dt
u(t) ≤ −cP

[
Rt|ηt|θ

]
.

Finally, Lemma 3.1.2 follows from this and Lemma 3.2.3. 2
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3.3 Proof of part (b)

Lemma 3.3.1 For θ ∈ [0, 1], 0 ≤ s ≤ t,

P [|ηt|θ] ≤
∑

y

P [ηθ
s,y]P [|ηt−s|θ]. (3.12)

Proof: For (s, y) ∈ [0,∞) × Zd, let ηs,y
t = (ηs,y

t,x )x∈Zd , t ∈ [s,∞) be the process starting from
time s, with one particle at y:

ηs,y
t,x = δx,y +

∫
N z

(s,t](dudξ)(ξx−z − δx,z)η
s,y
u−,z. (3.13)

Then,
ηt,x =

∑
y

ηs,yη
s,y
t,x , and hence |ηt| =

∑
y

ηs,y|ηs,y
t |.

Therefore, for θ ∈ [0, 1], we have

P [|ηt|θ] ≤
∑

y

P [ηθ
s,y]P [|ηs,y

t |θ] =
∑

y

P [ηθ
s,y]P [|ηt−s|θ].

2

Proof of part (b): Let θ ∈ (0, 1). We have by Lemma 3.3.1 that for t, u ≥ 0,

P [|ηt+u|θ] ≤ ruP [|ηt|θ], with ru =
∑

y

P [ηθ
u,y].

We will prove that
lim

u→∞
ru = 0. (3.14)

To prove this, we take Λu = (bmuc − uα, bmuc + uα] ∩ Z with α > 1/2 and divide ru into

ru,1 =
∑
y∈Λu

P [ηθ
u,y] and ru,2 =

∑
y∈Z\Λu

P [ηθ
u,y].

We have by Hölder’s inequality and (3.1) that

ru,1 ≤ |Λu|1−θP


 ∑

|y|≤uα

ηu,y

θ
 ≤ |Λu|1−θP

[
|ηu|θ

]
−→ 0, as u → ∞.

On the other hand, we see from Hölder’s inequality again and Lemma 3.1.1 that

ru,2 ≤
∑

y∈Z\Λu

P [ηu,y]
θ (3.2)

=
∑

y∈Z\Λu

PX(Xu = y)θ

≤
∑

y∈Z\Λu

PX(|Xu − bmuc| ≥ |y − bmuc|)θ

≤ c1

∑
y∈Z\Λu

exp
(
−θc2|y − bmuc|2/u

)
= c1

∑
|y|≥uα

exp
(
−θc2y

2/u
)
.

The last summation vanishes as u → ∞, since α > 1/2. 2
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3.4 Proof of part (c)

It is enough to consider the case: η0 = (δ0,x)x∈Zd . We see from (3.12) that for θ ∈ [0, 1] and
t ≥ 1,

P [|ηt|θ] ≤ r(θ)P [|ηt−1|θ] with r(θ) =
∑

x

P [ηθ
1,x]. (3.15)

We will show that
r(θ) < 1 for some θ ∈ (0, 1). (3.16)

Note that r(θ) is convex and r(1) = 1. Therefore, (3.16) will follow from that

0 < r′(1−) =
∑

x

P [η1,x ln η1,x]. (3.17)

We will prove (3.17) by showing that

e−(|k|−1)tΦt ≥ tκϕ, t ≥ 0, (3.18)

where
Φt =

∑
x

P [ϕ(ηt,x)] and κϕ =
∑

x

P [ϕ(Kx)]

with ϕ(u) = u lnu. In fact, (3.18) implies (3.17) since∑
x

P [η1,x ln η1,x] = e−(|k|−1)Φ1 − (|k| − 1) and κϕ > |k| − 1.

Now,

ϕ(ηt,x) =
∑
z∈Zd

∫
N z

t (dudξ) (ϕ ((ξx−z − δx,z)ηu−,z + ηu−,x) − ϕ(ηu−,x)) .

Thus, we compute

Φt =
∑

x

P [ϕ(ηt,x)]

=
∑

x,z∈Zd

∫ t

0
du

∫
ν(dξ)P [ϕ ((ξx−z − δx,z)ηu,z + ηu,x) − ϕ(ηu,x)]

=
∫ t

0
(Φ1,u + Φ2,u)du,

where

Φ1,u =
∑

x

∫
ν(dξ)P [ϕ (ξ0ηu,x) − ϕ(ηu,x)] ,

Φ2,u =
∑
x,z
x6=z

∫
ν(dξ)P [ϕ (ξx−zηu,z + ηu,x) − ϕ(ηu,x)] .

We first show that
Φ1,u = e(|k|−1)uP [ϕ(K0)] + ΦuP [K0 − 1]. (3.19)

Since ϕ(ab) = ϕ(a)b + aϕ(b), we have

ϕ (ξ0ηu,x) − ϕ(ηu,x) = ϕ (ξ0) ηu,x + (ξ0 − 1)ϕ(ηu,x).
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Plugging this into the definition of Φ1,u, we have (3.19). We next show that

Φ2,u ≥ e(|k|−1)u
∑
x 6=0

P [ϕ(Kx)] + Φu

∑
x6=0

P [Kx]. (3.20)

We first use ϕ(a + b) − ϕ(b) ≥ ϕ(a), and then ϕ(ab) = ϕ(a)b + aϕ(b) to see that

ϕ (ξx−zηu,z + ηu,x) − ϕ(ηu,x) ≥ ϕ (ξx−zηu,z)
= ϕ (ξx−z) ηu,z + ξx−zϕ(ηu,z).

Plugging this into the definition of Φ2,u, we have (3.20). We see from (3.19) and (3.20) that

d

dt
Φt = Φ1,t + Φ2,t ≥ κϕe(|k|−1)t + (|k| − 1)Φt,

which implies (3.18). 2
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