75 research outputs found

    SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton

    Get PDF
    The novel SUN-domain family of nuclear envelope proteins interacts with various KASH-domain partners to form SUN-domain-dependent 'bridges' across the inner and outer nuclear membranes. These bridges physically connect the nucleus to every major component of the cytoskeleton. SUN-domain proteins have diverse roles in nuclear positioning, centrosome localization, germ-cell development, telomere positioning and apoptosis. By serving both as mechanical adaptors and nuclear envelope receptors, we propose that SUN-domain proteins connect cytoplasmic and nucleoplasmic activities

    Nuclear Pore Structure: Warming up the Core

    Get PDF
    Structural determination of the nuclear pore complex has been limited by the complexity and size of this cellular megalith. By taking advantage of exceptionally stable nucleoporins from the thermophilic fungus Chaetomium thermophilum, Amlacher et al. (2011) provide new insight into a core element of the nuclear pore scaffold

    Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans

    Get PDF
    Barrier to autointegration factor (BAF) binds double-stranded DNA, selected histones, transcription regulators, lamins, and LAP2–emerin–MAN1 (LEM) domain proteins. During early Caenorhabditis elegans embryogenesis, BAF-1 is required to organize chromatin, capture segregated chromosomes within the nascent nuclear envelope, and assemble lamin and LEM domain proteins in reforming nuclei. In this study, we used C. elegans with a homozygous deletion of the baf-1 gene, which survives embryogenesis and larval stages, to report that BAF-1 regulates maturation and survival of the germline, cell migration, vulva formation, and the timing of seam cell fusion. In the seam cells, BAF-1 represses the expression of the EFF-1 fusogen protein, but fusion still occurs in C. elegans lacking both baf-1 and eff-1. This suggests the existence of an eff-1–independent mechanism for cell fusion. BAF-1 is also required to maintain the integrity of specific body wall muscles in adult animals, directly implicating BAF in the mechanism of human muscular dystrophies (laminopathies) caused by mutations in the BAF-binding proteins emerin and lamin A

    LEM-3 – A LEM Domain Containing Nuclease Involved in the DNA Damage Response in C. elegans

    Get PDF
    The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage – possibly by promoting the reorganization of damaged chromatin

    Leptotene/Zygotene Chromosome Movement Via the SUN/KASH Protein Bridge in Caenorhabditis elegans

    Get PDF
    The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates

    Lamins: the structure and protein complexes

    Full text link
    Lamins are nuclear intermediate filament (IF) proteins. They assemble to fibrous structures that are positioned between the inner nuclear membrane and the peripheral chromatin. A small fraction of lamins is also present in the nucleoplasm. Lamins are required to maintain the nuclear structure and, together with their associated proteins, are involved in most nuclear activities. Mutations in lamins cause >14 distinct diseases, called laminopathies, that include heart, muscle, fat and early aging diseases. However, it is not clear how lamins are organized in vivo and how the disease mutations affect lamin organization and functions. Here, we will review structural aspects of lamin assembly, discuss differences between peripheral and nucleoplasmic lamins and describe the protein complexes that lamins form

    Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation

    Full text link
    There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD
    • …
    corecore