2 research outputs found

    Adaptive Time-Triggered Multi-Core Architecture

    No full text
    The static resource allocation in time-triggered systems offers significant benefits for the safety arguments of dependable systems. However, adaptation is a key factor for energy efficiency and fault recovery in Cyber-Physical System (CPS). This paper introduces the Adaptive Time-Triggered Multi-Core Architecture (ATMA), which supports adaptation using multi-schedule graphs while preserving the key properties of time-triggered systems including implicit synchronization, temporal predictability and avoidance of resource conflicts. ATMA is an overall architecture for safety-critical CPS based on a network-on-a-chip with building blocks for context agreement and adaptation. Context information is established in a globally consistent manner, providing the foundation for the temporally aligned switching of schedules in the network interfaces. A meta-scheduling algorithm computes schedule graphs and avoids state explosion with reconvergence horizons for events. For each tile, the relevant part of the schedule graph is efficiently stored using difference encodings and interpreted by the adaptation logic. The architecture was evaluated using an FPGA-based implementation and example scenarios employing adaptation for improved energy efficiency. The evaluation demonstrated the benefits of adaptation while showing the overhead and the trade-off between the degree of adaptation and the memory consumption for multi-schedule graphs

    Experimental Evaluation of SAFEPOWER Architecture for Safe and Power-Efficient Mixed-Criticality Systems

    No full text
    With the ever-increasing industrial demand for bigger, faster and more efficient systems, a growing number of cores is integrated on a single chip. Additionally, their performance is further maximized by simultaneously executing as many processes as possible. Even in safety-critical domains like railway and avionics, multicore processors are introduced, but under strict certification regulations. As the number of cores is continuously expanding, the importance of cost-effectiveness grows. One way to increase the cost-efficiency of such a System on Chip (SoC) is to enhance the way the SoC handles its power consumption. By increasing the power efficiency, the reliability of the SoC is raised because the lifetime of the battery lengthens. Secondly, by having less energy consumed, the emitted heat is reduced in the SoC, which translates into fewer cooling devices. Though energy efficiency has been thoroughly researched, there is no application of those power-saving methods in safety-critical domains yet. The EU project SAFEPOWER (Safe and secure mixed-criticality systems with low power requirements) targets this research gap and aims to introduce certifiable methods to improve the power efficiency of mixed-criticality systems. This article provides an overview of the SAFEPOWER reference architecture for low-power mixed-criticality systems, which is the most important outcome of the project. Furthermore, the application of this reference architecture in novel railway interlocking and flight controller avionic systems was demonstrated, showing the capability to achieve power savings up to 37%, while still guaranteeing time-triggered task execution and time-triggered NoC-based communication
    corecore