5,995 research outputs found

    Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method

    Get PDF
    We present a new numerical scheme to solve the initial value problem for black hole-neutron star binaries. This method takes advantage of the flexibility and fast convergence of a multidomain spectral representation of the initial data to construct high-accuracy solutions at a relatively low computational cost. We provide convergence tests of the method for both isolated neutron stars and irrotational binaries. In the second case, we show that we can resolve the small inconsistencies that are part of the quasi-equilibrium formulation, and that these inconsistencies are significantly smaller than observed in previous works. The possibility of generating a wide variety of initial data is also demonstrated through two new configurations inspired by results from binary black holes. First, we show that choosing a modified Kerr-Schild conformal metric instead of a flat conformal metric allows for the construction of quasi-equilibrium binaries with a spinning black hole. Second, we construct binaries in low-eccentricity orbits, which are a better approximation to astrophysical binaries than quasi-equilibrium systems.Comment: 19 pages, 11 figures, Modified to match final PRD versio

    Issues for the Next Generation of Galaxy Surveys

    Get PDF
    I argue that the weight of the available evidence favours the conclusions that galaxies are unbiased tracers of mass, the mean mass density (excluding a cosmological constant or its equivalent) is less than the critical Einstein-de Sitter value, and an isocurvature model for structure formation offers a viable and arguably attractive model for the early assembly of galaxies. If valid these conclusions complicate our work of adding structure formation to the standard model for cosmology, but it seems sensible to pay attention to evidence.Comment: 14 pages, 3 postscript figures, uses rspublic.st

    Noether symmetry approach in phantom quintessence cosmology

    Full text link
    In the framework of phantom quintessence cosmology, we use the Noether Symmetry Approach to obtain general exact solutions for the cosmological equations. This result is achieved by the quintessential (phantom) potential determined by the existence of the symmetry itself. A comparison between the theoretical model and observations is worked out. In particular, we use type Ia supernovae and large scale structure parameters determined from the 2-degree Field Galaxy Redshift Survey (2dFGRS)and from the Wide part of the VIMOS-VLT Deep Survey (VVDS). It turns out that the model is compatible with the presently available observational data. Moreover we extend the approach to include radiation. We show that it is compatible with data derived from recombination and it seems that quintessence do not affect nucleosynthesis results.Comment: 26 pages, 13 figure

    Extrinsic Curvature and the Einstein Constraints

    Get PDF
    The Einstein initial-value equations in the extrinsic curvature (Hamiltonian) representation and conformal thin sandwich (Lagrangian) representation are brought into complete conformity by the use of a decomposition of symmetric tensors which involves a weight function. In stationary spacetimes, there is a natural choice of the weight function such that the transverse traceless part of the extrinsic curvature (or canonical momentum) vanishes.Comment: 8 pages, no figures; added new section; significant polishing of tex

    Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity

    Get PDF
    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the KST representation of the Einstein evolution equations. The basic "Mexico City Tests" widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test. All of these tests are found to be stable, except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure

    Scale-invariant gravity: Spacetime recovered

    Full text link
    The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Recently a manifestly 3-dimensional theory was constructed with conformal superspace as the configuration space. Here a fully 4-dimensional action is constructed so as to be invariant under conformal transformations of the 4-metric using general relativity as a guide. This action is then decomposed to a (3+1)-dimensional form and from this to its Jacobi form. The surprising thing is that the new theory turns out to be precisely the original 3-dimensional theory. The physical data is identified and used to find the physical representation of the theory. In this representation the theory is extremely similar to general relativity. The clarity of the 4-dimensional picture should prove very useful for comparing the theory with those aspects of general relativity which are usually treated in the 4-dimensional framework.Comment: Replaced with final version: minor changes to tex

    Initial Data and Coordinates for Multiple Black Hole Systems

    Get PDF
    We present here an alternative approach to data setting for spacetimes with multiple moving black holes generalizing the Kerr-Schild form for rotating or non-rotating single black holes to multiple moving holes. Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behaviour of null rays near the holes, may simplify horizon tracking, and may prove useful in computational applications. For computational evolution, a discussion of coordinates (lapse function and shift vector) is given which preserves some of the properties of the single-hole Kerr-Schild form

    Corotating and irrotational binary black holes in quasi-circular orbits

    Get PDF
    A complete formalism for constructing initial data representing black-hole binaries in quasi-equilibrium is developed. Radiation reaction prohibits, in general, true equilibrium binary configurations. However, when the timescale for orbital decay is much longer than the orbital period, a binary can be considered to be in quasi-equilibrium. If each black hole is assumed to be in quasi-equilibrium, then a complete set of boundary conditions for all initial data variables can be developed. These boundary conditions are applied on the apparent horizon of each black hole, and in fact force a specified surface to be an apparent horizon. A global assumption of quasi-equilibrium is also used to fix some of the freely specifiable pieces of the initial data and to uniquely fix the asymptotic boundary conditions. This formalism should allow for the construction of completely general quasi-equilibrium black hole binary initial data.Comment: 13 pages, no figures, revtex4; Content changed slightly to reflect fact that regularized shift solutions do satisfy the isometry boundary condition
    • …
    corecore