1,020 research outputs found

    Room temperature near-ultraviolet emission from In-rich InGaN/GaN multiple quantum wells

    Get PDF
    We grew In-rich InGaNGaN multiple quantum wells (MQWs) using growth interruption (GI) by metalorganic chemical vapor deposition. The quality of overgrown InGaNGaN QW layers in MQWs was largely affected by the crystalline quality and interfacial abruptness of the underlying QW layer. Introduction of 10 s GI was very effective in improving the crystalline quality and interfacial abruptness of InGaN QW layers, and we grew a ten periods of 1-nm -thick In-rich InGaNGaN MQW with 10 s GI and obtained a strong near-ultraviolet (UV) emission (~390 nm) at room temperature. We believe that use of less than 1-nm -thick In-rich InGaN MQW can be a candidate for near-UV source, which might replace the conventional low-indium content (<10%), thicker InGaN QW layer.open313

    Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo

    No full text
    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2′-Fluropyrimidine RNA aptamers (2′F-RNA) - P19 and P1 for construction of a cell type–specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection

    Get PDF
    Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (T-RM-like) cells. IL-7-mFc-primed pulmonary T-RM-like cells contribute to protection upon IAV infection by dual modes. First, T-RM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, T-RM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future. IMPORTANCE The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections.open1175sciescopu

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data

    Get PDF
    Background: In differential expression analysis of RNA-sequencing (RNA-seq) read count data for two sample groups, it is known that highly expressed genes (or longer genes) are more likely to be differentially expressed which is called read count bias (or gene length bias). This bias had great effect on the downstream Gene Ontology over-representation analysis. However, such a bias has not been systematically analyzed for different replicate types of RNA-seq data. Results: We show that the dispersion coefficient of a gene in the negative binomial modeling of read counts is the critical determinant of the read count bias (and gene length bias) by mathematical inference and tests for a number of simulated and real RNA-seq datasets. We demonstrate that the read count bias is mostly confined to data with small gene dispersions (e.g., technical replicates and some of genetically identical replicates such as cell lines or inbred animals), and many biological replicate data from unrelated samples do not suffer from such a bias except for genes with some small counts. It is also shown that the sample-permuting GSEA method yields a considerable number of false positives caused by the read count bias, while the preranked method does not. Conclusion: We showed the small gene variance (similarly, dispersion) is the main cause of read count bias (and gene length bias) for the first time and analyzed the read count bias for different replicate types of RNA-seq data and its effect on gene-set enrichment analysis

    Cerebral palsy and placental infection: a case-cohort study

    Get PDF
    BACKGROUND: The association between cerebral palsy in very preterm infants and clinical, histopathologic and microbiological indicators of chorioamnionitis, including the identification of specific micro-organisms in the placenta, was evaluated in a case-cohort study. METHODS: Children with a diagnosis of cerebral palsy at five years of age were identified from amongst participants in a long-term follow-up program of preterm infants. The comparison group was a subcohort of infants randomly selected from all infants enrolled in the program. The placentas were examined histopathologically for chorioamnionitis and funisitis, and the chorioamnionic interface was aseptically swabbed and comprehensively cultured for aerobic and anaerobic bacteria, yeast and genital mycoplasmas. Associations between obstetric and demographic variables, indicators of chorioamnionitis and cerebral palsy status were examined by univariate analysis. RESULTS: Eighty-two infants with cerebral palsy were compared with the subcohort of 207 infants. Threatened preterm labor was nearly twice as common among the cases as in the subcohort (p < 0.01). Recorded clinical choroamnionitis was similar in the two groups and there was no difference in histopathologic evidence of infection between the two groups. E. coli was cultured from the placenta in 6/30 (20%) of cases as compared with 4/85 (5%) of subcohort (p = 0.01). Group B Streptococcus was more frequent among the cases, but the difference was not statistically significant. CONCLUSIONS: The association between E. coli in the chorioamnion and cerebral palsy in preterm infants identified in this study requires confirmation in larger multicenter studies which include microbiological study of placentas

    Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO

    Full text link
    The shape dependence of the catalytic reduction of nitric oxide by carbon monoxide on rhodium nanopolyhedra and nanocubes was studied from 230 to 270 degrees C. The nanocubes are found to exhibit higher turnover frequency and lower activation energy than the nanopolyhedra. These trends are compared to previous studies on Rh single crystals.Chemistry, PhysicalSCI(E)EI21ARTICLE3-4317-32213
    corecore