22,899 research outputs found

    The metallicity dependence of envelope inflation in massive stars

    Get PDF
    Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes. We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish the impact of the stellar metallicity on the effect of envelope inflation. We analyse published grids of core-hydrogen burning massive star models computed with metallicities appropriate for massive stars in the Milky Way, the LMC and the SMC, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical composition. Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity peaks of iron, helium and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of the zero-age main sequence and a broadening of the main sequence band in the upper part of the Hertzsprung-Russell diagram. We derive the limiting L/M-values as function of the stellar surface temperature above which inflation occurs, and find them to be larger for lower metallicity. While Galactic models show inflation above ~29 Msun, the corresponding mass limit for Population III stars is ~150 Msun. While the masses of the inflated envelopes are generally small, we find that they can reach 1-100 Msun in models with effective temperatures below ~8000 K, with higher masses reached by models of lower metallicity. Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in Luminous Blue Variables like S Doradus and Eta Carina.Comment: 16 pages (with Appendix), accepted in A&

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Macromolecular separation through a porous surface

    Full text link
    A new technique for the separation of macromolecules is proposed and investigated. A thin mesh with pores comparable to the radius of gyration of a free chain is used to filter chains according to their length. Without a field it has previously been shown that the permeability decays as a power law with chain length. However by applying particular configurations of pulsed fields, it is possible to have a permeability that decays as an exponential. This faster decay gives much higher resolution of separation. We also propose a modified screen containing an array of holes with barb-like protrusions running parallel to the surface. When static friction is present between the macromolecule and the protrusion, some of the chains get trapped for long durations of time. By using this and a periodic modulation of an applied electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi

    Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    Get PDF
    Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=-1.7) are modelled during hydrogen burning for initial masses of 9-300 M_{\odot} and rotational velocities of 0-900 km s1^{-1}. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them Transparent Wind Ultraviolet INtense stars (TWUIN star), and their expected numbers might explain the observed HeII ionizing photon flux in I Zw 18 and other low-metallicity HeII galaxies. Our slowly rotating stars above \sim80 M_{\odot} evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19m^{\mathrm{m}} at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star-forming dwarf galaxies and high-redshift galaxies, as well as the metal-poor components of our Milky Way and its globular clusters.Comment: accepted for publication in A\&

    Electronic Transport in the Oxygen Deficient Ferromagnetic Semiconducting TiO2δ_{2-\delta}

    Full text link
    TiO2δ_{2-\delta} films were deposited on (100) Lanthanum aluminates LaAlO3_{3} substrates at a very low oxygen chamber pressure P0.3P\approx 0.3 mtorr employing a pulsed laser ablation deposition technique. In previous work, it was established that the oxygen deficiency in these films induced ferromagnetism. In this work it is demonstrated that this same oxygen deficiency also gives rise to semiconductor titanium ion impurity donor energy levels. Transport resistivity measurements in thin films of TiO2δ_{2-\delta} are presented as a function of temperature and magnetic field. Magneto- and Hall- resistivity is explained in terms of electronic excitations from the titanium ion donor levels into the conduction band.Comment: RevTeX4, Four pages, Four Figures in ^.eps forma

    Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films

    Full text link
    We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.Comment: Accepted by Phys. Rev. Let

    Magnetoelectric Effects on Composite Nano Granular Fe/TiO2δFe/TiO_{2-\delta} Films

    Full text link
    Employing a new experimental technique to measure magnetoelectric response functions, we have measured the magnetoelectric effect in composite films of nano granular metallic iron in anatase titanium dioxide at temperatures below 50 K. A magnetoelectric resistance is defined as the ratio of a transverse voltage to bias current as a function of the magnetic field. In contrast to the anomalous Hall resistance measured above 50 K, the magnetoelectic resistance below 50 K is significantly larger and exhibits an even symmetry with respect to magnetic field reversal HHH\to -H. The measurement technique required attached electrodes in the plane of the film composite in order to measure voltage as a function of bias current and external magnetic field. To our knowledge, the composite films are unique in terms of showing magnetoelectric effects at low temperatures, << 50 K, and anomalous Hall effects at high temperatures, >> 50 K.Comment: ReVTeX, 2 figures, 3 page

    Controlling internal barrier in low loss BaTiO3 supercapacitors

    Get PDF
    Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite

    Ferromagnetism in defect-ridden oxides and related materials

    Full text link
    The existence of high-temperature ferromagnetism in thin films and nanoparticles of oxides containing small quantities of magnetic dopants remains controversial. Some regard these materials as dilute magnetic semiconductors, while others think they are ferromagnetic only because the magnetic dopants form secondary ferromagnetic impurity phases such as cobalt metal or magnetite. There are also reports in d0 systems and other defective oxides that contain no magnetic ions. Here, we investigate TiO2 (rutile) containing 1 - 5% of iron cations and find that the room-temperature ferromagnetism of films prepared by pulsed-laser deposition is not due to magnetic ordering of the iron. The films are neither dilute magnetic semiconductors nor hosts to an iron-based ferromagnetic impurity phase. A new model is developed for defect-related ferromagnetism which involves a spin-split defect band populated by charge transfer from a proximate charge reservoir in the present case a mixture Fe2+ and Fe3+ ions in the oxide lattice. The phase diagram for the model shows how inhomogeneous Stoner ferromagnetism depends on the total number of electrons Ntot, the Stoner exchange integral I and the defect bandwidth W; the band occupancy is governed by the d-d Coulomb interaction U. There are regions of ferromagnetic metal, half-metal and insulator as well as nonmagnetic metal and insulator. A characteristic feature of the high-temperature Stoner magnetism is an an anhysteretic magnetization curve which is practically temperature independent below room temperature. This is related to a wandering ferromagnetic axis which is determined by local dipole fields. The magnetization is limited by the defect concentration, not by the 3d doping. Only 1-2 % of the volume of the films is magnetically ordered.Comment: 22 pages, 6 figure

    Youth Smoking, Cigarette Prices, and Anti-Smoking Sentiment

    Get PDF
    In this paper, we develop a new direct measure of state anti-smoking sentiment and merge it with micro data on youth smoking in 1992 and 2000. The empirical results from the cross-sectional models show two consistent patterns: after controlling for differences in state anti-smoking sentiment, the price of cigarettes has a weak and statistically insignificant influence on smoking participation; and state anti-smoking sentiment appears to be a potentially important influence on youth smoking participation. The cross-sectional results are corroborated by results from discrete time hazard models of smoking initiation that include state fixed effects. However, there is evidence of price-responsiveness in the conditional cigarette demand by youth and young adult smokers.
    corecore