6,403 research outputs found
A method for extracting emotion using colors comprise the painting image
Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotions from paintings by using the colors that comprise the paintings. The proposed approach is based on a color image scale, which is one of the popular experimental scales focusing on the relation between colors and emotions. We first construct a color combination and emotional word dataset. To this end, we create a color spectrum from the input painting. We then search for the best matching color combination from the dataset, which is most similar to the color spectrum. The best matching color combination is mapped to the corresponding emotional word. Afterward, we extract the emotional word as the emotion evoked by the painting. To evaluate the proposed method, we compared the results of the proposed algorithm to those of a user study on the extraction of emotions from several paintings. Through several experiments, we show that the proposed method exhibits excellent performance with respect to predicting the emotions evoked by a painting. Finally, we propose an image exploration system based on the emotion extraction method mentioned above. In this system, users can explore painting images emotionally coherently
Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana
Nanoscale zerovalent iron (nZVI) is the most widely used nanomaterial for environmental remediation. The impacts of nZVI on terrestrial organisms have been recently reported, and in particular, plant growth was promoted by nZVI treatment in various concentrations. Therefore, it is necessary to investigate the detailed physiological and biochemical responses of plants toward nZVI treatment for agricultural application. Here, the effects of nZVI on photosynthesis and related biochemical adaptation of soil-grown Arabidopsis thaliana were examined. After treatment with 500 mg nZVI/kg soil, the plant biomass increased by 38% through enhanced photosynthesis, which was confirmed by the gas-exchange system, carbon isotope ratio and chlorophyll content analysis. Besides, the iron uptake of the plant increased in roots and leaves. The magnetic property measurements and transmission electron microscopy showed that the transformed particles were accumulated in parts of the plant tissues. The accumulation of carbohydrates such as glucose, sucrose and starch increased by the enhanced photosynthesis, and photosynthetic-related inorganic nutrients such as phosphorus, manganese and zinc maintained homeostasis, according to the increased iron uptake. These findings suggest that nZVI has additional or alternative benefits as a nano-fertilizer and a promoter of CO2 uptake in plants.11Ysciescopu
Properties of Central Caustics in Planetary Microlensing
To maximize the number of planet detections, current microlensing follow-up
observations are focusing on high-magnification events which have a higher
chance of being perturbed by central caustics. In this paper, we investigate
the properties of central caustics and the perturbations induced by them. We
derive analytic expressions of the location, size, and shape of the central
caustic as a function of the star-planet separation, , and the planet/star
mass ratio, , under the planetary perturbative approximation and compare the
results with those based on numerical computations. While it has been known
that the size of the planetary caustic is \propto \sqrt{q}, we find from this
work that the dependence of the size of the central caustic on is linear,
i.e., \propto q, implying that the central caustic shrinks much more rapidly
with the decrease of compared to the planetary caustic. The central-caustic
size depends also on the star-planet separation. If the size of the caustic is
defined as the separation between the two cusps on the star-planet axis
(horizontal width), we find that the dependence of the central-caustic size on
the separation is \propto (s+1/s). While the size of the central caustic
depends both on and q, its shape defined as the vertical/horizontal width
ratio, R_c, is solely dependent on the planetary separation and we derive an
analytic relation between R_c and s. Due to the smaller size of the central
caustic combined with much more rapid decrease of its size with the decrease of
q, the effect of finite source size on the perturbation induced by the central
caustic is much more severe than the effect on the perturbation induced by the
planetary caustic. Abridged.Comment: 5 pages, 4 figures, ApJ accepte
Response to imatinib rechallenge in a patient with a recurrent gastrointestinal stromal tumor after adjuvant therapy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Adjuvant imatinib improves recurrence-free survival of patients following resection of primary KIT-positive gastrointestinal stromal tumors. However, it is unknown whether patients who previously received adjuvant imatinib therapy will respond to imatinib rechallenge as treatment for recurrent disease. Here we present the first report documenting the benefits of imatinib rechallenge in a patient previously exposed to imatinib during adjuvant treatment.</p> <p>Case presentation</p> <p>A 51-year-old Asian woman with a wedge-resected primary gastric gastrointestinal stromal tumor at high risk of relapse underwent two years of adjuvant treatment with imatinib. Only 10 months after the completion of adjuvant imatinib treatment, a computed tomography scan revealed gastrointestinal stromal tumor recurrence in this patient, with multiple peritoneal nodules in the upper abdomen being detected. Our patient was rechallenged with imatinib 400 mg/day and had a partial response after one month of treatment. Imatinib rechallenge was well tolerated by our patient; the only adverse events she experienced were grade 1 edema, anemia and fatigue. Our patient maintained a partial response two years and six months after the imatinib rechallenge. However, computed tomography scans three months later showed that our patient had disease progression.</p> <p>Conclusions</p> <p>This case report demonstrates that a patient with a gastrointestinal stromal tumor who had previously received adjuvant imatinib therapy responded to imatinib rechallenge as treatment for her recurrent disease. These results indicate that imatinib sensitivity can be maintained in a patient with previous exposure to adjuvant imatinib therapy.</p
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
MULTIPLE HARMONIC PLASMA EMISSION
Electromagnetic radiation at the plasma frequency and/or its second harmonic, the so-called plasma emission, is widely accepted as the fundamental process responsible for solar type II and III radio bursts. There have also been occasional observations of higher-harmonic plasma emissions in the solar-terrestrial environment. This paper presents the first demonstration of multiple harmonic emission by means of two-dimensional electromagnetic particle-in-cell simulation. This finding indicates that under certain circumstances the traditional mechanism of fundamental-harmonic pair emission might also be accompanied by higher-harmonic components. Consequently, the present findings are highly relevant to in situ observations of third- and/or higher-harmonic plasma emission in astrophysical and solar-terrestrial environments.open111313sciescopu
Effect of growth interruption on optical properties of In-rich InGaN/GaN single quantum well structures
In-rich InGaN/GaN single quantum well (SQW) structures with and without growth interruption (GI) were successfully grown on sapphire substrates by metal-organic chemical vapor deposition. The optical properties were systematically investigated by photoluminescence (PL), selectively excited PL, PL excitation (PLE), and cathodoluminescence (CL) techniques. The integrated PL intensity of the main In-rich InGaN emissions for the sample grown without GI decreased only by a factor of 15.5 when the temperature increased from 11 to 300 K, while that of the sample with GI decreased by about 1040, showing very good quantum efficiency for the sample without GI. The In-rich InGaN SQW emissions have been verified by selectively excited PL spectra and by the different PLE absorption edges. CL observations showed that the epilayer of the sample without GI agglomerated together to form clusters due to the large lattice and thermal mismatches with GaN, which confine the carriers in the clusters and ensure the relatively high quantum efficiency of the sample. The sample with GI showed relatively smooth surface with cluster structures jointed together, which gives two-dimensional QW environment in its energy band structure, and its optical emission is more sensitive to temperatures than that of the sample grown without GI.open7
- …