2,309 research outputs found
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated
The archaeological contribution of forensic craniofacial reconstruction to a portrait drawing of a Korean historical figure
Craniofacial reconstruction (CFR) is a technique used to rebuild the living facial appearance onto a skull in order to recognise or identify an individual. This technique is primarily employed in forensic investigation, but also utilised in archaeological research to recreate the faces of paleontological and archaeological humans. In this study, the face of a 17th century historical figure from Korea was reconstructed utilising computerized tomography from the mummified remains. A geographic surface comparison programme was employed to evaluate the accuracy of the CFR produced using a three-dimensional computerized modelling system. Analysis of the facial tissue depth discrepancies demonstrated that the CFR may have acceptable resemblance to the living face of the historical individual. Using computerised graphic technology, the CFR outcome, along with the archaeological information about the hair style, ornaments, and dress discovered in the tomb, a portrait-styled in the typical drawing trend from the era was created. The research suggests that current CFR techniques can provide an accurate portrait drawing of historical figures in Korea
Recommended from our members
Finite element analysis for normal pressure hydrocephalus: The effects of the integration of sulci.
Finite element analysis (FEA) is increasingly used to investigate the brain under various pathological changes. Although FEA has been used to study hydrocephalus for decades, previous studies have primarily focused on ventriculomegaly. The present study aimed to investigate the pathologic changes regarding sulcal deformation in normal pressure hydrocephalus (NPH). Two finite element (FE) models-an anatomical brain geometric (ABG) model and the conventional simplified brain geometric (SBG) model-of NPH were constructed. The models were constructed with identical boundary conditions but with different geometries. The ABG model contained details of the sulci geometry, whereas these details were omitted from the SBG model. The resulting pathologic changes were assessed via four biomechanical parameters: pore pressure, von Mises stress, pressure, and void ratio. NPH was induced by increasing the transmantle pressure gradient (TPG) from 0 to a maximum of 2.0 mmHg. Both models successfully simulated the major features of NPH (i.e., ventriculomegaly and periventricular lucency). The changes in the biomechanical parameters with increasing TPG were similar between the models. However, the SBG model underestimated the degree of stress across the cerebral mantle by 150% compared with the ABG model. The SBG model also overestimates the degree of ventriculomegaly (increases of 194.5% and 154.1% at TPG = 2.0 mmHg for the SBG and ABG models, respectively). Including the sulci geometry in a FEA for NPH clearly affects the overall results. The conventional SBG model is inferior to the ABG model, which accurately simulated sulcal deformation and the consequent effects on cortical or subcortical structures. The inclusion of sulci in future FEA for the brain is strongly advised, especially for models used to investigate space-occupying lesions.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1004827).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.media.2015.05.00
Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer
Yu Been Shin,1,* Ju-Yeon Choi,2,* Moon Sup Yoon,1 Myeong Kyun Yoo,1 Dae Hwan Shin,1,3,* Jeong-Won Lee4,5,* 1College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea; 2Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; 3Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea; 4Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; 5Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea*These authors contributed equally to this workCorrespondence: Dae Hwan Shin, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea, Tel +82 43 261 2820, Fax +82 43 268 2732, Email [email protected] Jeong-Won Lee, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, South Korea, Zip 06351, Tel\Fax +82-2-3410-1382, Email [email protected]: Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and SoluplusŸ (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer.Methods: We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system.Results: OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was > 65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo.Conclusion: Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer. Keywords: mixed micelle, combination therapy, nanoformulation, IV formula, antitumor efficac
A mutate-and-map protocol for inferring base pairs in structured RNA
Chemical mapping is a widespread technique for structural analysis of nucleic
acids in which a molecule's reactivity to different probes is quantified at
single-nucleotide resolution and used to constrain structural modeling. This
experimental framework has been extensively revisited in the past decade with
new strategies for high-throughput read-outs, chemical modification, and rapid
data analysis. Recently, we have coupled the technique to high-throughput
mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure
of not only that nucleotide but also its interaction partner. Carrying out the
mutation and mapping for the entire system gives an experimental approximation
of the molecules contact map. Here, we give our in-house protocol for this
mutate-and-map strategy, based on 96-well capillary electrophoresis, and we
provide practical tips on interpreting the data to infer nucleic acid
structure.Comment: 22 pages, 5 figure
Global distribution and diversity of marine Verrucomicrobia
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 1499-1505, doi:10.1038/ismej.2012.3.Verrucomicrobia is a bacterial phylum that is commonly detected in soil but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as eleven coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S rRNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that Subdivision 1 and 4 generally dominated marine bacterial communities, whereas Subdivision 2 was confined to low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared to sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth, and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.We would like to thank the UCI Undergraduate Research Opportunity Program (S.F.), the National Science Foundation (OCE-0928544 and OCE-1046297, A.C.M.) and the Alfred P. Sloan Foundation (S.H., D.M.W., M.S.) for supporting the work
Tailoring the atomic structure of graphene nanoribbons by STM lithography
The practical realization of nano-scale electronics faces two major
challenges: the precise engineering of the building blocks and their assembly
into functional circuits. In spite of the exceptional electronic properties of
carbon nanotubes only basic demonstration-devices have been realized by
time-consuming processes. This is mainly due to the lack of selective growth
and reliable assembly processes for nanotubes. However, graphene offers an
attractive alternative. Here we report the patterning of graphene nanoribbons
(GNRs) and bent junctions with nanometer precision, well-defined widths and
predetermined crystallographic orientations allowing us to fully engineer their
electronic structure using scanning tunneling microscope (STM) lithography. The
atomic structure and electronic properties of the ribbons have been
investigated by STM and tunneling spectroscopy measurements. Opening of
confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based
devices, is reported. This method avoids the difficulties of assembling
nano-scale components and allows the realization of complete integrated
circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres
Concurrent use of prescription drugs and herbal medicinal products in older adults: A systematic review
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The use of herbal medicinal products (HMPs) is common among older adults. However, little is known about concurrent use with prescription drugs as well as the potential interactions associated with such combinations. Objective Identify and evaluate the literature on concurrent prescription and HMPs use among older adults to assess prevalence, patterns, potential interactions and factors associated with this use. Methods Systematic searches in MEDLINE, PsycINFO, EMBASE, CINAHL, AMED, Web of Science and Cochrane from inception to May 2017 for studies reporting concurrent use of prescription medicines with HMPs in adults (â„65 years). Quality was assessed using the Joanna Briggs Institute checklists. The Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) three stage approach to mixed method research was used to synthesise data. Results Twenty-two studies were included. A definition of HMPs or what was considered HMP was frequently missing. Prevalence of concurrent use by older adults varied widely between 5.3% and 88.3%. Prescription medicines most combined with HMPs were antihypertensive drugs, beta blockers, diuretics, antihyperlipidemic agents, anticoagulants, analgesics, antihistamines, antidiabetics, antidepressants and statins. The HMPs most frequently used were: ginkgo, garlic, ginseng, St Johnâs wort, Echinacea, saw palmetto, evening primrose oil and ginger. Potential risks of bleeding due to use of ginkgo, garlic or ginseng with aspirin or warfarin was the most reported herb-drug interaction. Some data suggests being female, a lower household income and less than high school education were associated with concurrent use. Conclusion Prevalence of concurrent prescription drugs and HMPs use among older adults is substantial and potential interactions have been reported. Knowledge of the extent and manner in which older adults combine prescription drugs will aid healthcare professionals can appropriately identify and manage patients at risk.Peer reviewedFinal Published versio
Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival
OBJECTIVE: To investigate the usefulness of computed tomography (CT) texture analysis (CTTA) in estimating histologic tumor grade and in predicting disease-free survival (DFS) after surgical resection in patients with hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Eighty-one patients with a single HCC who had undergone quadriphasic liver CT followed by surgical resection were enrolled. Texture analysis of tumors on preoperative CT images was performed using commercially available software. The mean, mean of positive pixels (MPP), entropy, kurtosis, skewness, and standard deviation (SD) of the pixel distribution histogram were derived with and without filtration. The texture features were then compared between groups classified according to histologic grade. Kaplan-Meier and Cox proportional hazards analyses were performed to determine the relationship between texture features and DFS. RESULTS: SD and MPP quantified from fine to coarse textures on arterial-phase CT images showed significant positive associations with the histologic grade of HCC (p < 0.05). Kaplan-Meier analysis identified most CT texture features across the different filters from fine to coarse texture scales as significant univariate markers of DFS. Cox proportional hazards analysis identified skewness on arterial-phase images (fine texture scale, spatial scaling factor [SSF] 2.0, p < 0.001; medium texture scale, SSF 3.0, p < 0.001), tumor size (p = 0.001), microscopic vascular invasion (p = 0.034), rim arterial enhancement (p = 0.024), and peritumoral parenchymal enhancement (p = 0.010) as independent predictors of DFS. CONCLUSION: CTTA was demonstrated to provide texture features significantly correlated with higher tumor grade as well as predictive markers of DFS after surgical resection of HCCs in addition to other valuable imaging and clinico-pathologic parameters
Geometric frustration in the myosin superlattice of vertebrate muscle
Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis
- âŠ