1,234 research outputs found

    Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α

    Get PDF
    Increased levels of hypoxia and hypoxia-inducible factor 1α (HIF-1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged antiangiogenic therapy of tumors not only delays tumor growth but may also increase hypoxia and HIF-1α activity. In our recent clinical trial, treatment with the vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, followed by a combination of bevacizumab and radiation led to near complete necrosis in nearly half of sarcomas. Gene Set Enrichment Analysis of microarrays from pretreatment biopsies found that the Gene Ontology category “Response to hypoxia” was upregulated in poor responders and that the hierarchical clustering based on 140 hypoxia-responsive genes reliably separated poor responders from good responders. The most commonly used chemotherapeutic drug for sarcomas, doxorubicin (Dox), was recently found to block HIF-1α binding to DNA at low metronomic doses. In four sarcoma cell lines, HIF-1α shRNA or Dox at low concentrations blocked HIF-1α induction of VEGF-A by 84–97% and carbonic anhydrase 9 by 83–93%. HT1080 sarcoma xenografts had increased hypoxia and/or HIF-1α activity with increasing tumor size and with anti-VEGF receptor antibody (DC101) treatment. Combining DC101 with HIF-1α shRNA or metronomic Dox had a synergistic effect in suppressing growth of HT1080 xenografts, at least in part via induction of tumor endothelial cell apoptosis. In conclusion, sarcomas respond to increased hypoxia by expressing HIF-1α target genes that may promote resistance to antiangiogenic and other therapies. HIF-1α inhibition blocks this evasive resistance and augments destruction of the tumor vasculature. What’s new? Despite their initial promise, anti-angiogenic therapies have been a disappointment in the clinic. One reason is that solid tumors often become resistant to these drugs. Tumors that respond poorly to this type of therapy have increased activation of the hypoxia-induced transcription factor HIF-1α which can enhance tumor survival and progression. In this study, the authors report that this evasive resistance can be overcome by adding low-dose doxorubicin or shRNA to inhibit HIF-1α activity. They are thus developing a clinical trial combining the angiogenesis inhibitor bevacizumab with metronomic doxorubicin in sarcoma patients

    KRAS activation in gastric cancer stem-like cells promotes tumor angiogenesis and metastasis

    Get PDF
    Abstract Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.This study was funded by NIH/NCI grant P30 CA008748, the DeGregorio Family Foundation, and Stand Up To Cancer

    The Use of Radiation Therapy in the Management of Selected Patients with Atypical Lipomas

    Get PDF
    Background and Objectives. Atypical lipomas are uncommon, slow-growing benign tumors. While surgery has been the primary treatment modality, we have managed some patients with radiation (RT) as a component of the treatment and have reported their outcomes in this study. Methods. A retrospective review of all cases of extremity and trunk atypical lipomas in The Sarcoma Database at the study institution was conducted. Results. Thirteen patients were identified. All patients underwent surgical resection at initial presentation and received pre- or postoperative radiation for subtotal resection (n = 2), local recurrence (n = 8), or progressive disease (n = 3). The median total radiation dose was 50 Gy. Median followup was 65.1 months. All patients treated with RT remained free of disease at the last followup. No grade 3 or higher late toxicity from radiation was observed. No cases of tumor dedifferentiation occurred. Conclusion. For recurrent or residual atypical lipomas, a combination of reexcision and RT can provide long-term local control with acceptable morbidity. For recurrent tumors, pre-op RT of 50 Gy appears to be an effective and well-tolerated management approach

    Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

    Get PDF
    Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)−1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L−1 h−1 and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L−1 h−1; yield 59%)
    corecore