14 research outputs found

    Face-PAST: Facial Pose Awareness and Style Transfer Networks

    Full text link
    Facial style transfer has been quite popular among researchers due to the rise of emerging technologies such as eXtended Reality (XR), Metaverse, and Non-Fungible Tokens (NFTs). Furthermore, StyleGAN methods along with transfer-learning strategies have reduced the problem of limited data to some extent. However, most of the StyleGAN methods overfit the styles while adding artifacts to facial images. In this paper, we propose a facial pose awareness and style transfer (Face-PAST) network that preserves facial details and structures while generating high-quality stylized images. Dual StyleGAN inspires our work, but in contrast, our work uses a pre-trained style generation network in an external style pass with a residual modulation block instead of a transform coding block. Furthermore, we use the gated mapping unit and facial structure, identity, and segmentation losses to preserve the facial structure and details. This enables us to train the network with a very limited amount of data while generating high-quality stylized images. Our training process adapts curriculum learning strategy to perform efficient and flexible style mixing in the generative space. We perform extensive experiments to show the superiority of Face-PAST in comparison to existing state-of-the-art methods.Comment: 20 pages, 8 figures, 2 table

    Mechanical Properties of Silicon Nanowires

    Get PDF
    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm

    Demo: Mobility Enhanced RPL for General Mobility Scenarios

    No full text
    This demo presents MobiRPL that improves RPL for reliable routing under a mobility scenario in low-power and lossy networks. In the considered mobility scenario, mobile devices participate in routing/forwarding. MobiRPL has four new components that RPL does not have. We implement MobiRPL on Contiki OS. This demo will present an operation example of MobiRPL using Cooja simulator.N

    Hybrid Conv-Attention Networks for Synthetic Aperture Radar Imagery-Based Target Recognition

    No full text
    In this study, we propose hybrid conv-attention networks that combine convolutional neural networks (CNNs) and transformers to recognize targets from synthetic aperture radar (SAR) images automatically. The proposed model is designed to obtain robust features from global and local patterns in the SAR image, utilizing the weights of a pre-trained backbone model with self-attention structures. Furthermore, we adopted pre-processing and training methods optimized for transfer learning to enhance performance. By comparing and analyzing the performance between the proposed model and conventional models using the OpenSARShip and MSTAR dataset, we found that our system significantly outperforms conventional approaches, with a performance improvement of 24.06%. This considerable enhancement is attributed to the ability of the model to leverage the 2D kernel-based approach of CNNs and the sequence vector-based approach of transformers, offering a comprehensive method for SAR image target recognition

    Photoresponse Analysis of All-Inkjet-Printed Single-Walled Carbon Nanotube Thin-Film Transistors for Flexible Light-Insensitive Transparent Circuit Applications

    No full text
    We report daylight-stable, transparent, and flexible single-walled carbon nanotube thin-film transistors (SWCNT TFTs) using an all-inkjet printing process. Although most of the previous reports classified SWCNT TFTs as photodetectors, we demonstrated that SWCNT films actually show two different types of photoresponses depending on the power levels of light sources. The electrical characteristics of SWCNT TFTs show no significant change under daily illumination conditions such as halogen lamps and sunlight, while under high-power laser illumination, they change as reported in the previous results. In addition, the low-temperature solution process of the SWCNT with its one-dimensional nature allows us to realize highly transparent and flexible TFTs and logic circuits on plastic substrates. Our result will provide new insights into utilizing SWCNT TFTs for light-insensitive transparent and flexible electronic applications

    Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin

    No full text
    Soft pressure sensors play key roles as input devices of electronic skin (E-skin) to imitate real human skin. For efficient data acquisition according to stimulus types such as detailed pressure images or macroscopic strength of stimuli, soft pressure sensors can have variable spatial resolution, just like the uneven spatial distribution of pressure-sensing receptors on the human body. However, previous methods on soft pressure sensors cannot achieve such tunability of spatial resolution because their sensor materials and read-out electrodes need to be elaborately patterned for a specific sensor density. Here, we report a universal soft pressure-sensitive platform based on anisotropically self-assembled ferromagnetic particles embedded in elastomer matrices whose spatial resolution can be facilely tuned. Various spatial densities of pressure-sensing receptors of human body parts can be implemented by simply sandwiching the film between soft electrodes with different pitches. Since the anisotropically aligned nickel particles form independent filamentous conductive paths, the pressure sensors show spatial sensing ability without crosstalk, whose spatial resolution up to 100 dpi can be achieved from a single platform. The sensor array shows a wide dynamic range capable of detecting various pressure levels, such as liquid drops (∼30 Pa) and plantar (∼300 kPa) pressures. Our universal soft pressure-sensing platform would be a key enabling technology for actually imitating the receptor systems of human skin in robot and biomedical applications

    MYD88 L265P Mutations Are Correlated with 6q Deletion in Korean Patients with Waldenström Macroglobulinemia

    No full text
    Waldenström macroglobulinemia (WM) is a malignant lymphoplasma-proliferative disorder with IgM monoclonal gammopathy. A recent whole-genome study identified MYD88 L265P as the key mutation in WM. We investigated MYD88 mutations in conjunction with cytogenetic study in 22 consecutive Korean WM patients. Conventional G-banding and interphase fluorescence in situ hybridization (FISH) were performed at regions including 6q21 using bone marrow (BM) aspirates. Sixteen patients were subjected to Sanger sequencing-based MYD88 mutation study. Five patients (28%) showed cytogenetic aberrations in G-banding. The incidence of 6q21 deletion was 17% by conventional G-banding and 37% by FISH. Ten patients (45%) showed cytogenetic aberrations using FISH: 6q deletion in eight (37%) and IGH rearrangement in four (18%). Two patients had both the 6q deletion and IGH rearrangement, and two had only the IGH rearrangement. Eleven patients (69%) presented with the MYD88 L265P mutation. MYD88 mutations were significantly associated with the presence of 6q deletions (P=0.037). Six patients with the 6q deletion for whom sequencing was possible were found to harbor MYD88 mutations. The MYD88 L265P mutation was also associated with increased lymphocyte burden in BM biopsy. This is the first report of high frequency MYD88 L265P mutations in Korean WM patients

    Recyclable High-Performance Polymer Electrolyte Based on a Modified Methyl Cellulose-Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems

    No full text
    Although energy-storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all-solid-state energy-storage devices with enhanced stability is proposed. A new eco-friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS-LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm(-1). An all-solid-state supercapacitor fabricated from 20 wt % LiTFS-LiSMC shows comparable specific capacitances to a standard liquid-electrolyte supercapacitor and an excellent stability even after 20 000 charge-discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro-supercapacitors. In addition, the LiTFS-LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy-storage devices

    Advancements in Electronic Materials and Devices for Stretchable Displays

    No full text
    A stretchable display would be the ultimate form factor for the next generation of displays beyond the curved and foldable configurations that have enabled the commercialization of deformable electronic applications. However, because conventional active devices are very brittle and vulnerable to mechanical deformation, appropriate strategies must be developed from the material and structural points of view to achieve the desired mechanical stretchability without compromising electrical properties. In this regard, remarkable findings and achievements in stretchable active materials, geometrical designs, and integration enabling technologies for various types of stretchable electronic elements have been actively reported. This review covers the recent developments in advanced materials and feasible strategies for the realization of stretchable electronic devices for stretchable displays. In particular, representative strain-engineering technologies for stretchable substrates, electrodes, and active devices are introduced. Various state-of-the-art stretchable active devices such as thin-film transistors and electroluminescent devices that consist of stretchable matrix displays are also presented. Finally, the future perspectives and challenges for stretchable active displays are discussed.N
    corecore