443 research outputs found

    A study on factors affecting the safety zone in ship-to-ship LNG bunkering

    Get PDF
    The objective of this paper is to examine the characteristics of leaked-gas dispersion in ship-to-ship liquefied natural gas (LNG) bunkering, thereby providing an insight towards determining the appropriate level of safety zones. For this purpose, parametric studies are undertaken in various operational and environmental conditions, with varying geometry of the ships, gas leak rate, wind speed and wind direction. The study applies computational fluid dynamics (CFD) simulations for case-specific scenarios where a hypothetical LNG bunkering ship with a capacity of 5100 m3 in tank space is considered to refuel two typical types of large ocean-going vessels: an 18,000 TEU container ship and a 319,000 DWT very large crude oil carrier. It is found that wind speed, wind direction, ship geometry and loading condition are important parameters affecting the extent of safety zones in addition to gas leak rate and leak duration. Details of the computations and discussions are presented

    Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance

    Get PDF
    Recent developments of organoids engineering and organ-on-a-chip microfluidic technologies have enabled the recapitulation of the major functions and architectures of microscale human tissue, including tumor pathophysiology. Nevertheless, there remain challenges in recapitulating the complexity and heterogeneity of tumor microenvironment. The integration of these engineering technologies suggests a potential strategy to overcome the limitations in reconstituting the perfusable microvascular system of large-scale tumors conserving their key functional features. Here, we review the recent progress of in vitro tumor-on-a-chip microfluidic technologies, focusing on the reconstruction of microvascularized organoid models to suggest a better platform for personalized cancer medicine.This work was supported by the National Institutes of Health Directors New Innovator Award 1DP2HL142050 (Y.K.) and the National Science Foundation under CAREER CMMI 1653006 (Y.K.)

    Path finding strategies in scale-free networks

    Full text link
    We numerically investigate the scale-free network model of Barab{\'a}si and Albert [A. L. Barab{\'a}si and R. Albert, Science {\bf 286}, 509 (1999)] through the use of various path finding strategies. In real networks, global network information is not accessible to each vertex, and the actual path connecting two vertices can sometimes be much longer than the shortest one. A generalized diameter depending on the actual path finding strategy is introduced, and a simple strategy, which utilizes only local information on the connectivity, is suggested and shown to yield small-world behavior: the diameter DD of the network increases logarithmically with the network size NN, the same as is found with global strategy. If paths are sought at random, DN0.5D \sim N^{0.5} is found.Comment: 4 pages, final for

    Pressure-Dependent Structure of BaZrO3 Crystals as Determined by Raman Spectroscopy

    Get PDF
    The structure of dielectric perovskite BaZrO3, long known to be cubic at room temperature without any structural phase transition with variation in temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. Pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorphs, helping in turn to understand its ground state structure at atmospheric pressure. Here, the Raman scattering spectra of high-quality BaZrO3 single crystals grown by the optical floating zone method are investigated in a pressure range from 1 atm to 42 GPa. First, based on the analyses of the infrared and Raman spectra measured at atmospheric pressure, it was found that all the observed vibrational modes could be assigned according to the cubic Pm3??m structure. In addition, by applying pressure, two structural phase transitions were found at 8.4 and 19.2 GPa, one from the cubic to the rhombohedral R3??c phase and the other from the rhombohedral to the tetragonal I4/mcm phase. Based on the two pressure-induced structural phase transitions, the true ground state structure of BaZrO3 at room temperature and ambient pressure was corroborated to be cubic while the rhombohedral phase was the closest second

    WATCHFUL OBSERVATION VERSUS EARLY AORTIC VALVE REPLACEMENT FOR SYMPTOMATIC PATIENTS WITH LOW-GRADIENT SEVERE AORTIC STENOSIS AND PRESERVED EJECTION FRACTION

    Get PDF
    Brief Communications Arising: arising from X. Dong, B. Milholland & J. Vijg Nature 538, 257–259 (2016); doi:10.1038/nature19793. Comments by: Beer, J.A.A. de, Bardoutsos, A. & Janssen, F. (2017)

    Correction: triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival

    Get PDF
    After the publication of this work [1], we found that there were some mistakes in calculating the percentage of composition in Table 1(1). Clinicopathologic characteristics of breast cancer subtypes. We are therefore providing the revised Table 1, with the updated data for rows Mucinous carcinoma, Metaplastic carcinoma and Others. In the sub-content of Table 1, Histological type, the total number of Others was corrected from 18 to 16, and the composition of Others type was slightly changed according to breast cancer subtypes. For IHC-Her2 subtype, the number of Others was changed from 4 to 3, and 6 cases which were previously unidentified were assigned to corresponding subtypes. One case to IHC-BLBC, 2 cases to IHC-QNBC/5NP and 3 cases to IHC-TNCB. There was no effect on statistical analysis with the correction.

    Correction: triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival

    Get PDF
    After the publication of this work [1], we found that there were some mistakes in calculating the percentage of composition in Table 1(1). Clinicopathologic characteristics of breast cancer subtypes. We are therefore providing the revised Table 1, with the updated data for rows Mucinous carcinoma, Metaplastic carcinoma and Others. In the sub-content of Table 1, Histological type, the total number of Others was corrected from 18 to 16, and the composition of Others type was slightly changed according to breast cancer subtypes. For IHC-Her2 subtype, the number of Others was changed from 4 to 3, and 6 cases which were previously unidentified were assigned to corresponding subtypes. One case to IHC-BLBC, 2 cases to IHC-QNBC/5NP and 3 cases to IHC-TNCB. There was no effect on statistical analysis with the correction.

    Identification of Novel Reference Genes Using Multiplatform Expression Data and Their Validation for Quantitative Gene Expression Analysis

    Get PDF
    Normalization of mRNA levels using endogenous reference genes (ERGs) is critical for an accurate comparison of gene expression between different samples. Despite the popularity of traditional ERGs (tERGs) such as GAPDH and ACTB, their expression variability in different tissues or disease status has been reported. Here, we first selected candidate housekeeping genes (HKGs) using human gene expression data from different platforms including EST, SAGE, and microarray, and 13 novel ERGs (nERGs) (ARL8B, CTBP1, CUL1, DIMT1L, FBXW2, GPBP1, LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27, UBQLN1, ZNF207) were further identified from these HKGs. The mean coefficient variation (CV) values of nERGs were significantly lower than those of tERGs and the expression level of most nERGs was relatively lower than high expressing tERGs in all dataset. The higher expression stability and lower expression levels of most nERGs were validated in 108 human samples including formalin-fixed paraffin-embedded (FFPE) tissues, frozen tissues and cell lines, through quantitative real-time RT-PCR (qRT-PCR). Furthermore, the optimal number of nERGs required for accurate normalization was as few as two, while four genes were required when using tERGs in FFPE tissues. Most nERGs identified in this study should be better reference genes than tERGs, based on their higher expression stability and fewer numbers needed for normalization when multiple ERGs are required

    The Clinical Usefulness of the SD Bioline Influenza Antigen Test® for Detecting the 2009 Influenza A (H1N1) Virus

    Get PDF
    Though the 2009 worldwide influenza A (H1N1) pandemic has been declared to have ended, the influenza virus is expected to continue to circulate from some years as a seasonal influenza. A rapid antigen test (RAT) can aid in rapid diagnosis and allow for early antiviral treatment. We evaluated the clinical usefulness of RAT using SD Bioline Influenza Antigen Test® kit to detect the influenza virus, considering various factors. From August 1, 2009 to October 10, 2009, a total of 938 patients who visited the outpatient clinic at Korea University Guro Hospital with influenza-like illnesses were enrolled in the study. Throat or nasopharyngeal swab specimens were obtained from each of the patients. Using these specimens, we evaluated the influenza detection rate by rapid antigen test based on the real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) method. In comparison with rRT-PCR, the sensitivity and specificity of the RAT were 44.0% and 99.9%, respectively. The cyclic threshold values of RAT negative specimens were higher than RAT positive specimens (30.1±3.1 vs. 28.3±3.9, p=0.031). The sensitivity of the RAT kit was higher in patients who visited clinics within two days of symptom onset (60.4% vs. 11.1%, p=0.026). The results of this study show that the RAT cannot be recommended for general use in all patients with influenza-like illness because of its low sensitivity. The RAT may be used, only in the settings with limited diagnostic resources, for patients who visit a clinic within two days of symptom onset

    Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair

    Get PDF
    Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.
    corecore