19,639 research outputs found
Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order
Angle resolved photoemission (ARPES) data from the electron doped cuprate
superconductor SmCeCuO shows a much stronger pseudo-gap
or "hot-spot" effect than that observed in other optimally doped -type
cuprates. Importantly, these effects are strong enough to drive the
zone-diagonal states below the chemical potential, implying that d-wave
superconductivity in this compound would be of a novel "nodeless" gap variety.
The gross features of the Fermi surface topology and low energy electronic
structure are found to be well described by reconstruction of bands by a
order. Comparison of the ARPES and optical data from
the sample shows that the pseudo-gap energy observed in optical data is
consistent with the inter-band transition energy of the model, allowing us to
have a unified picture of pseudo-gap effects. However, the high energy
electronic structure is found to be inconsistent with such a scenario. We show
that a number of these model inconsistencies can be resolved by considering a
short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
Global visualization and quantification of compressible vortex loops
The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study
Quantum Teleportation with a Complete Bell State Measurement
We report a quantum teleportation experiment in which nonlinear interactions
are used for the Bell state measurements. The experimental results demonstrate
the working principle of irreversibly teleporting an unknown arbitrary quantum
state from one system to another distant system by disassembling into and then
later reconstructing from purely classical information and nonclassical EPR
correlations. The distinct feature of this experiment is that \emph{all} four
Bell states can be distinguished in the Bell state measurement. Teleportation
of a quantum state can thus occur with certainty in principle.Comment: 4 pages, submitted to PR
Statistical Mechanics of Support Vector Networks
Using methods of Statistical Physics, we investigate the generalization
performance of support vector machines (SVMs), which have been recently
introduced as a general alternative to neural networks. For nonlinear
classification rules, the generalization error saturates on a plateau, when the
number of examples is too small to properly estimate the coefficients of the
nonlinear part. When trained on simple rules, we find that SVMs overfit only
weakly. The performance of SVMs is strongly enhanced, when the distribution of
the inputs has a gap in feature space.Comment: REVTeX, 4 pages, 2 figures, accepted by Phys. Rev. Lett (typos
corrected
Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars
We present 2.5D radiation-hydrodynamics simulations of the accretion-induced
collapse (AIC) of white dwarfs, starting from 2D rotational equilibrium
configurations of a 1.46-Msun and a 1.92-Msun model. Electron capture leads to
the collapse to nuclear densities of these cores within a few tens of
milliseconds. The shock generated at bounce moves slowly, but steadily,
outwards. Within 50-100ms, the stalled shock breaks out of the white dwarf
along the poles. The blast is followed by a neutrino-driven wind that develops
within the white dwarf, in a cone of ~40deg opening angle about the poles, with
a mass loss rate of 5-8 x 10^{-3} Msun/yr. The ejecta have an entropy on the
order of 20-50 k_B/baryon, and an electron fraction distribution that is
bimodal. By the end of the simulations, at >600ms after bounce, the explosion
energy has reached 3-4 x 10^{49}erg and the total ejecta mass has reached a few
times 0.001Msun. We estimate the asymptotic explosion energies to be lower than
10^{50}erg, significantly lower than those inferred for standard core collapse.
The AIC of white dwarfs thus represents one instance where a neutrino mechanism
leads undoubtedly to a successful, albeit weak, explosion.
We document in detail the numerous effects of the fast rotation of the
progenitors: The neutron stars are aspherical; the ``nu_mu'' and anti-nu_e
neutrino luminosities are reduced compared to the nu_e neutrino luminosity; the
deleptonized region has a butterfly shape; the neutrino flux and electron
fraction depend strongly upon latitude (a la von Zeipel); and a quasi-Keplerian
0.1-0.5-Msun accretion disk is formed.Comment: 25 pages, 19 figures, accpeted to ApJ, high resolution of the paper
and movies available at http://hermes.as.arizona.edu/~luc/aic/aic.htm
Hyperpolarizability and operational magic wavelength in an optical lattice clock
Optical clocks benefit from tight atomic confinement enabling extended
interrogation times as well as Doppler- and recoil-free operation. However,
these benefits come at the cost of frequency shifts that, if not properly
controlled, may degrade clock accuracy. Numerous theoretical studies have
predicted optical lattice clock frequency shifts that scale nonlinearly with
trap depth. To experimentally observe and constrain these shifts in an
Yb optical lattice clock, we construct a lattice enhancement cavity
that exaggerates the light shifts. We observe an atomic temperature that is
proportional to the optical trap depth, fundamentally altering the scaling of
trap-induced light shifts and simplifying their parametrization. We identify an
"operational" magic wavelength where frequency shifts are insensitive to
changes in trap depth. These measurements and scaling analysis constitute an
essential systematic characterization for clock operation at the
level and beyond.Comment: 5 + 2 pages, 3 figures, added supplementa
Theory of disordered flux-line liquids
We study the equilibrium statics and nonequilibrium driven dynamics of flux
line liquids in presence of a random pinning potential. Under the assumption of
replica symmetry, we find in the static case using a replica Gaussian
variational method that the only effect of disorder is to increase the tilt
modulus and the confining "mass" of the internal modes of the flux lines, thus
decreasing their thermal wandering. In the nonequilibrium, driven case, we
derive the long scale, coarse-grained equation of motion of the vortices in
presence of disorder, which apart from new Kardar-Parisi-Zhang nonlinearities,
has the same form as the equation of motion for unpinned vortices, with
renormalized coefficients. This implies, in particular, that the structure
factor of a disordered vortex liquid has the same functional form as in the
absence of pinning, in disagreement with the results of previous hydrodynamic
methods. The expression of the static structure factor derived within our
approach is consistent both with experimental data and with the standard theory
of elasticity of vortex lattices.Comment: 27 pages, 1 figure; added a new Appendix; accepted for publication in
Phys. Rev.
Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight
Cosmic-ray proton and helium spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in
Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data
were collected at an average altitude of ~38.5 km with an average atmospheric
overburden of ~3.9 g cm. Individual elements are clearly separated with
a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and
helium nuclei, respectively. The measured spectra at the top of the atmosphere
are represented by power laws with a spectral index of -2.66 0.02 for
protons from 2.5 TeV to 250 TeV and -2.58 0.02 for helium nuclei from 630
GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a
few tens of GeV/nucleon. The helium flux is higher than that expected from the
extrapolation of the power law fitted to the lower-energy data. The relative
abundance of protons to helium nuclei is 9.1 0.5 for the range from 2.5
TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the
previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
- âŠ