16 research outputs found

    Coulomb scattering mechanism transition in 2D layered MoTe2: effect of high-kappa passivation and Schottky barrier height

    No full text
    Clean interface and low contact resistance are crucial requirements in two-dimensional (2D) materials to preserve their intrinsic carrier mobility. However, atomically thin 2D materials are sensitive to undesired Coulomb scatterers such as surface/interface adsorbates, metal-tosemiconductor Schottky barrier (SB), and ionic charges in the gate oxides, which often limits the understanding of the charge scattering mechanism in 2D electronic systems. Here, we present the effects of hafnium dioxide (HfO2) high-kappa passivation and SB height on the low-frequency (LF) noise characteristics of multilayer molybdenum ditelluride (MoTe2) transistors. The passivated HfO2 passivation layer significantly suppresses the surface reaction and enhances dielectric screening effect, resulting in an excess electron n-doping, zero hysteresis, and substantial improvement in carrier mobility. After the high-kappa HfO2 passivation, the obtained LF noise data appropriately demonstrates the transition of the Coulomb scattering mechanism from the SB contact to the channel, revealing the significant SB noise contribution to the 1/f noise. The substantial excess LF noise in the subthreshold regime is mainly attributed to the excess metal-to-MoTe2 SB noise and is fully eliminated at the high drain bias regime. This study provides a clear insight into the origin of electronic signal perturbation in 2D electronic systems © 2018 IOP Publishing Ltd Printed in the U

    Strong Coulomb scattering effects on low frequency noise in monolayer WS2 fieldeffecttransistors

    No full text
    When atomically thin semiconducting transition metal dichalcogenides are used as a channel material, they are inevitably exposed to supporting substrates. This situation can lead to masking of intrinsic properties by undesired extrinsic doping and/or additional conductance fluctuations from the largely distributed Coulomb impurities at the interface between the channel and the substrate. Here, we report low-frequency noise characteristics in monolayer WS2 field-effect transistors on silicon/silicon-oxide substrate. To mitigate the effect of extrinsic low-frequency noise sources, a nitrogen annealing was carried out to provide better interface quality and to suppress the channel access resistance. The carrier number fluctuation and the correlated mobility fluctuation (CNFCMF) model was better than the sole CNF one to explain our low-frequency noise data, because of the strong Coulomb scattering effect on the effective mobility caused by carrier trapping/detrapping at oxide traps. The temperature-dependent field-effect mobility in the four-probe configuration and the Coulomb scattering parameters are presented to support this strong Coulomb scattering effect on carrier transport in monolayer WS2 field-effect transistor. Published by AIP Publishing.1551sciescopu

    Electrothermal Local Annealing via Graphite Joule Heating on Two-Dimensional Layered Transistors

    No full text
    A simple but powerful device platform for electrothermal local annealing (ELA) via graphite Joule heating on the surface of transition-metal dichalcogenide, is suggested here to sustainably restore intrinsic electrical properties of atomically thin layered materials. Such two-dimensional materials are easily deteriorated by undesirable surface/interface adsorbates and are screened by a high metal-to-semiconductor contact resistance. The proposed ELA allows one to expect a better electrical performance such as an excess electron doping, an enhanced carrier mobility, and a reduced surface traps in a monolayer molybdenum disulfide (MoS2)/graphite heterostructure. The thermal distribution of local heating measured by an infrared thermal microscope and estimated by a finite element calculation shows that the annealing temperature reaches up to >400 K at ambient condition and the high efficiency of site-specific annealing is demonstrated unlike the case of conventional global thermal annealing. This ELA platform can be further promoted as a practical gas sensor application. From an O2 cycling test and a low-frequency noise spectroscopy, the graphite on top of the MoS2 continuously recovers its initial condition from surface adsorbates. This ELA technique significantly improves the stability and reliability of its gas sensing capability, which can be expanded in various nanoscale device applications. Copyright © 2018 American Chemical Societ

    Large–Area Graphene Electrode for Ferroelectric Control of Pb(Mg1/3Nb2/3)O3–PbTiO3 Single Crystal

    No full text
    Abstract Large‐area monolayer graphene is utilized as a metallic electrode for a ferroelectric single‐crystal [Pb(Mg1/3Nb2/3)O3]m–[PbTiO3]n (PMNPT). Unlike conventional metal, whose properties remain unaffected by field‐induced charge carriers, graphene's unique Dirac‐cone band structure causes its carrier density to vary in response to the polarization state of contacting dielectrics. PMNPT capacitors with graphene‐only and graphene/Cr/Au electrodes exhibit similar polarization versus electric‐field curves. However, polarization switching in PMNPT and corresponding charge‐state conversion in the graphene electrode are observed in the device configuration of a graphene‐ferroelectric field‐effect transistor. Systematic analysis of graphene's source‐drain current variation reveals that experimental results align well with a theoretical model considering the intrinsically doped state in graphene and ferroelectric surface charge state in PMNPT. Furthermore, interfacial charge trapping discussed in many previous reports is not observed. These findings suggest that large‐area monolayer graphene effectively serves as an electrode for ferroelectric single‐crystal materials, irrespective of its atomically thin structure and ambipolar metallic nature

    Highly elastic conductive sponges by joule heat-driven selective polymer reinforcement at reduced graphene oxide junctions

    No full text
    © 2019 Elsevier LtdPolymer reinforcement of reduced graphene oxide (rGO) sponges is widely employed to enhance mechanical strength and elasticity. However, the surplus polymer decreases electrical conductivity by passivating the conductive surface of rGO flakes. Here we firstly report the selective polydimethylsiloxane (PDMS) reinforcement at the flake junction of rGO sponge by the Joule heating process utilizing the high electrical contact resistance. The preferential Joule heating of the junction is theoretically simulated by finite element modeling and experimentally confirmed by micro-thermal infrared imaging. The local temperature increase results in the further reduction of rGO and preferential PDMS curing at the flake junction only. The PDMS/rGO mass ratio was carefully optimized at 3.96. The electrical conductivity (0.087 S m−1 at 0% strain) is more than an order of magnitude higher than that (0.00251 S m−1) of the conventional oven-heated sponge with a similar PDMS/rGO mass ratio. The mechanical strength is equivalent (210.3 kPa at 70% strain), in spite of the preferential polymer coating at the rGO flake junction only, with excellent elasticity. The Joule heating method is an excellent curing strategy to selectively reinforce flake junctions for conductive elastic rGO-polymer sponges11sciescopu

    Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film

    No full text
    Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance. © 2016 American Chemical Society1331sciescopu

    Electrothermal Local Annealing via Graphite Joule Heating on Two-Dimensional Layered Transistors

    No full text
    A simple but powerful device platform for electrothermal local annealing (ELA) via graphite Joule heating on the surface of transition-metal dichalcogenide, is suggested here to sustainably restore intrinsic electrical properties of atomically thin layered materials. Such two-dimensional materials are easily deteriorated by undesirable surface/interface adsorbates and are screened by a high metal-to-semiconductor contact resistance. The proposed ELA allows one to expect a better electrical performance such as an excess electron doping, an enhanced carrier mobility, and a reduced surface traps in a monolayer molybdenum disulfide (MoS<sub>2</sub>)/graphite heterostructure. The thermal distribution of local heating measured by an infrared thermal microscope and estimated by a finite element calculation shows that the annealing temperature reaches up to >400 K at ambient condition and the high efficiency of site-specific annealing is demonstrated unlike the case of conventional global thermal annealing. This ELA platform can be further promoted as a practical gas sensor application. From an O<sub>2</sub> cycling test and a low-frequency noise spectroscopy, the graphite on top of the MoS<sub>2</sub> continuously recovers its initial condition from surface adsorbates. This ELA technique significantly improves the stability and reliability of its gas sensing capability, which can be expanded in various nanoscale device applications

    Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor

    No full text
    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the VG sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. © 2015 American Chemical Society125211sciescopu
    corecore