22 research outputs found

    Towards End-to-End Generative Modeling of Long Videos with Memory-Efficient Bidirectional Transformers

    Full text link
    Autoregressive transformers have shown remarkable success in video generation. However, the transformers are prohibited from directly learning the long-term dependency in videos due to the quadratic complexity of self-attention, and inherently suffering from slow inference time and error propagation due to the autoregressive process. In this paper, we propose Memory-efficient Bidirectional Transformer (MeBT) for end-to-end learning of long-term dependency in videos and fast inference. Based on recent advances in bidirectional transformers, our method learns to decode the entire spatio-temporal volume of a video in parallel from partially observed patches. The proposed transformer achieves a linear time complexity in both encoding and decoding, by projecting observable context tokens into a fixed number of latent tokens and conditioning them to decode the masked tokens through the cross-attention. Empowered by linear complexity and bidirectional modeling, our method demonstrates significant improvement over the autoregressive Transformers for generating moderately long videos in both quality and speed. Videos and code are available at https://sites.google.com/view/mebt-cvpr2023

    Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering

    Get PDF
    For decades, bioinspired functional materials have been attracting the interest of many researchers for their remarkable characteristics. In particular, some plant leaves are well known for their inherent superhydrophobic nature. Salvinia molesta, a free-floating aquatic fern, has egg-beater-shaped hierarchical trichomes on its surface of leaves. Due to the unique structure and complex wettability of the hairs, this plant has the ability to maintain a stable thick air layer upon the structure when it is submerged underwater. Often referred to as the "Salvinia Effect," this property is expected to be suitable for use in hydrodynamic drag reduction. However, due to the complex shape of the trichome, currently applied fabrication methods are using a three-dimensional printing system, which is not applicable to mass production because of its severely limited productivity. In this work, artificial Salvinia leaf inspired by S. molesta was fabricated using a conventional soft lithography method assisted with capillary-force-induced clustering of micropillar array. The fabrication method suggested in this work proposes a promising strategy for the manufacturing of Salvinia-inspired hydrodynamic drag reduction surfaces. Salvinia molesta plant has the ability to maintain a stable air layer when submerged underwater due to its specific form. The authors propose here a soft lithography fabrication method of artificial Salvinia leaf assisted with capillary-force induced clustering of micropillar array, for hydrodynamic drag reduction

    Simulation study of dose enhancement in a cell due to nearby carbon and oxygen in particle radiotherapy

    Get PDF
    The aim of this study is to investigate the dose-deposition enhancement by alpha-particle irradiation in a cellular model using carbon and oxygen chemical compositions.A simulation study was performed to study dose enhancement due to carbon and oxygen for a human cell where Geant4 code used for the alpha-particle irradiation to the cellular phantom. The characteristic of dose enhancement in the nucleus and cytoplasm by the alpha-particle radiation was investigated based on concentrations of the carbon and oxygen compositions and was compared with those by gold and gadolinium.The results show that both the carbon and oxygen-induced dose enhancement was found to be more effective than those of gold and gadolinium. We found that the dose-enhancement effect was more dominant in the nucleus than in the cytoplasm if carbon or oxygen is uniformly distributed in a whole cell. In the condition that the added chemical composition was inserted only into the cytoplasm, the effect of the dose enhancement in nucleus becomes weak.We showed that high-stopping-power materials offer a more effective dose-enhancement efficacy and suggest that the carbon nanotubes and oxygenation are promising candidates for dose utilization as dose enhancement tools in particle therapy.Comment: 19 pages, 6 figures, 4 tables. presented to 7th KOREA-JAPAN Joint Meeting on Medical Physics (2014.09.25) accepted to Journal of the Korean Physical Society (2015.03.10

    Cellular plasticity and immune microenvironment of malignant pleural effusion are associated with EGFR-TKI resistance in non-small-cell lung carcinoma

    Get PDF
    Malignant pleural effusion (MPE) is a complication of lung cancer that can be used as an alternative method for tissue sampling because it is generally simple and minimally invasive. Our study evaluated the diagnostic potential of non-small-cell lung carcinoma (NSCLC)-associated MPE in terms of understanding tumor heterogeneity and identifying response factors for EGFR tyrosine kinase inhibitor (TKI) therapy. We performed a single-cell RNA sequencing analysis of 31,743 cells isolated from the MPEs of 9 patients with NSCLC (5 resistant and 4 sensitive to EGFR TKI) with EGFR mutations. Interestingly, lung epithelial precursor-like cells with upregulated GNB2L1 and CAV1 expression were enriched in the EGFR TKI-resistant group. Moreover, GZMK upregulated transitional effector T cells, and plasmacytoid dendritic cells were significantly enriched in the EGFR TKI-resistant patients. Our results suggest that cellular plasticity and immunosuppressive microenvironment in MPEs are potentially associated with the TKI response of patients with EGFR-mutated NSCLC

    LongLine: Visual Analytics System for Large-scale Audit Logs

    No full text
    Audit logs are different from other software logs in that they record the most primitive events (i.e., system calls) in modern operating systems. Audit logs contain a detailed trace of an operating system, and thus have received great attention from security experts and system administrators. However, the complexity and size of audit logs, which increase in real time, have hindered analysts from understanding and analyzing them. In this paper, we present a novel visual analytics system, LongLine, which enables interactive visual analyses of large-scale audit logs. LongLine lowers the interpretation barrier of audit logs by employing human-understandable representations (e.g., file paths and commands) instead of abstract indicators of operating systems (e.g., file descriptors) as well as revealing the temporal patterns of the logs in a multi-scale fashion with meaningful granularity of time in mind (e.g., hourly, daily, and weekly). LongLine also streamlines comparative analysis between interesting subsets of logs, which is essential in detecting anomalous behaviors of systems. In addition, LongLine allows analysts to monitor the system state in a streaming fashion, keeping the latency between log creation and visualization less than one minute. Finally, we evaluate our system through a case study and a scenario analysis with security experts

    Chassis Design Target Setting for a High-Performance Car Using a Virtual Prototype

    No full text
    In this study, the chassis design target setting for a high-performance car was performed using a virtual prototype to solve the problem of increasing complexity of vehicle development. To achieve efficient handling performance of Hyundai Avante N, a high-performance vehicle, the kinematic and compliance (K&C) characteristics of the chassis corresponding to the design target were set prior to the design process using virtual simulation, thereby facilitating the efficient and systematic development of the actual vehicle. In order to overcome the limitations of existing research and apply it to the actual development of mass-production vehicles, the following major tasks were performed. The first is setting quantitative factors that match the sensibility evaluation. The second is building a virtual model to ensure consistency in performance predictions. The third is optimizing the chassis characteristics to achieve the vehicle performance goal. When all optimization results were applied, the average of the performance items increased by 0.5 points and the standard deviation improved by 0.4 points compared to the existing Civic Type-R, which was the best. In the case of the final specification considering design constraints, the average of performance items increased by 0.1 point and the standard deviation improved by 0.5 point compared to the existing Civic Type-R. Therefore, the design target of the chassis systems that could achieve the vehicle handling performance goal could be established prior to the design. Using this virtual development, it is possible to eliminate the trial and error process that the first and second test cars needed. This could save more than 500,000 USD (per unit trim) of the first and second test vehicles

    PG-Based Vehicle-In-the-Loop Simulation for System Development and Consistency Validation

    No full text
    The concern over safety features in autonomous vehicles is increasing due to the rapid development and increasing use of autonomous driving technology. The safety evaluations performed for an autonomous driving system cannot depend only on existing safety verification methods, due to the lack of scenario reproducibility and the dynamic characteristics of the vehicle. Vehicle-In-the-Loop Simulation (VILS) utilizes both real vehicles and virtual simulations for the driving environment to overcome these drawbacks and is a suitable candidate for ensuring reproducibility. However, there may be differences between the behavior of the vehicle in the VILS and vehicle tests due to the implementation level of the virtual environment. This study proposes a novel VILS system that displays consistency with the vehicle tests. The proposed VILS system comprises virtual road generation, synchronization, virtual traffic manager generation, and perception sensor modeling, and implements a virtual driving environment similar to the vehicle test environment. Additionally, the effectiveness of the proposed VILS system and its consistency with the vehicle test is demonstrated using various verification methods. The proposed VILS system can be applied to various speeds, road types, and surrounding environments

    A Nonrandomized Phase 2 Trial of EG-Mirotin, a Novel, First-in-Class, Subcutaneously Deliverable Peptide Drug for Nonproliferative Diabetic Retinopathy

    No full text
    Background and objectives: EG-Mirotin (active ingredient EGT022) targets nonproliferative diabetic retinopathy (NPDR), the early stage of retinopathy. EG-Mirotin reverses capillary damage before NPDR progresses to an irreversible stage. EG-Mirotin safety and efficacy were investigated in patients with type 1 or type 2 diabetes mellitus and moderate to severe NPDR. Methods: In this open-label, single-arm, single-center, exploratory phase II study, 10 patients (20 eyes) received EG-Mirotin once a day (3 mg/1.5 mL sterile saline) for 5 days and were evaluated for ischemic index changes and safety. End of study was approximately 8 ± 1 weeks (57 ± 7 days) after the first drug administration. Results: EG-Mirotin injections were well tolerated, with no dose-limiting adverse events, serious adverse events, or deaths. Four treatment-emergent adverse events (TEAEs) unrelated to the investigational drug were observed in 2 out of 10 participants (20%) who had received the investigational drug. The overall average percent change in ischemic index at each evaluation point compared with baseline was statistically significant (Greenhouse–Geisser F = 9.456, p = 0.004 for the main effect of time), and a larger change was observed when the baseline ischemic index value was high (Greenhouse–Geisser F = 10.946, p = 0.002 for time × group interaction). Conclusions: The EG-Mirotin regimen established in this study was shown to be feasible and safe and was associated with a trend toward potential improvement in diabetes-induced ischemia and retinal capillary leakage
    corecore